public SymbolEntry(BinaryInputBuffer inBuf, Map<Integer, String> stringTable) throws IOException { // Parse name byte[] nameArray = new byte[8]; inBuf.read(nameArray); // If first 4 bytes are 0, the next 4 are an offset into the string table if ((nameArray[0] == 0) && (nameArray[1] == 0) && (nameArray[2] == 0) && (nameArray[3] == 0)) { int stringOffset = ((nameArray[7] & 0xFF) << 24) | ((nameArray[6] & 0xFF) << 16) | ((nameArray[5] & 0xFF) << 8) | (nameArray[4] & 0xFF); String nameString = stringTable.get(stringOffset); if (nameString != null) { Name = nameString; } else { logger.warn("No name in string table for symbol at specified offset " + stringOffset); Name = "Anonymous(" + stringOffset + ")"; } } else { StringBuilder nBuilder = new StringBuilder(); for (int i = 0; i < 8; i++) { if ((nameArray[i] & 0xFF) > 32 && (nameArray[i] & 0xFF) < 128) nBuilder.append((char) (nameArray[i] & 0xFF)); } Name = nBuilder.toString(); } Value = inBuf.readDWORD(); int section = inBuf.readWORD(); if (section >= 32768) SectionNumber = section - 65536; else SectionNumber = section; Type = inBuf.readWORD(); StorageClass = inBuf.readBYTE(); NumberOfAuxSymbols = inBuf.readBYTE(); }
/** For all unresolved symbols, install simple stubs. */ public void installStubs() { if (mainModule instanceof AbstractCOFFModule) { stubLibrary = new Win32StubLibrary(arch); } else if (mainModule instanceof ELFModule) { stubLibrary = new LinuxStubLibrary(arch); } Iterator<UnresolvedSymbol> sIter = unresolvedSymbols.iterator(); while (sIter.hasNext()) { UnresolvedSymbol unresolvedSymbol = sIter.next(); AbsoluteAddress address = stubLibrary.resolveSymbol(unresolvedSymbol.getFromLibrary(), unresolvedSymbol.getName()); if (address != null) { // logger.debug("Installing stack height stub for " + unresolvedSymbol.getName()); unresolvedSymbol.resolve(address); sIter.remove(); } } if (!unresolvedSymbols.isEmpty()) logger.warn("Unresolved symbols remaining: " + unresolvedSymbols); }
@Override public void run() { Runtime runtime = Runtime.getRuntime(); // Jakstab Algorithm System.out.println("Starting CPA algorithm."); AbstractState start = cpa.initStartState(transformerFactory.getInitialLocation()); worklist.add(start); reached.add(start); if (art != null) art.setRoot(start); // Set up precisions Precision precision = cpa.initPrecision(transformerFactory.getInitialLocation(), null); Map<Location, Precision> precisionMap = new HashMap<Location, Precision>(); precisionMap.put(start.getLocation(), precision); int steps = 0; statesVisited = 0; final int stepThreshold = 1000; long startTime = System.currentTimeMillis(); long lastSteps = 0; long lastTime = 0; while (!worklist.isEmpty() && !stop && (!failFast || isSound())) { statesVisited++; if (++steps == stepThreshold) { // Helps limit memory usage long now = System.currentTimeMillis(); System.gc(); long gcTime = System.currentTimeMillis() - now; logger.debug("Time for GC: " + gcTime + "ms"); now = System.currentTimeMillis(); long duration = Math.max(1, now - lastTime); long speed = (1000L * (statesVisited - lastSteps) / duration); // speed = Math.min(speed, 1000); logger.warn( "*** Reached " + reached.size() + " states, processed " + statesVisited + " states after " + (now - startTime) + "ms, at " + speed + " states/second" + (transformerFactory instanceof ResolvingTransformerFactory ? ", " + program.getInstructionCount() + " instructions." : ".")); logger.info( String.format( " Allocated heap memory: %.2f MByte", (runtime.totalMemory() - runtime.freeMemory()) / (1024.0 * 1024.0))); steps = 0; // StatsPlotter.plot((now - startTime) + "\t" + statesVisited // +"\t" + program.getInstructionCount() + "\t" + gcTime + "\t" // + speed); lastSteps = statesVisited; lastTime = now; if (Options.timeout.getValue() > 0 && (System.currentTimeMillis() - startTime > Options.timeout.getValue() * 1000)) { logger.error("Timeout after " + Options.timeout.getValue() + "s!"); stop = true; } } // We need the state before precision refinement for building the // ART AbstractState unadjustedState = worklist.pick(); /* * if (unadjustedState.getLocation().getAddress().toString().equals( * "0x00401189") //|| * unadjustedState.getLocation().getAddress().toString * ().equals("0x0040119b") || * unadjustedState.getLocation().getAddress * ().toString().equals("0x00401078") || * unadjustedState.getLocation( * ).getAddress().toString().equals("0x0040100a") ) * System.out.println("Debug " + * unadjustedState.getLocation().getAddress().toString()); */ precision = precisionMap.get(unadjustedState.getLocation()); Pair<AbstractState, Precision> pair = cpa.prec(unadjustedState, precision, reached); // Warning: The refined a is not stored in "reached", only used for // successor calculation AbstractState a = pair.getLeft(); /* * CompositeState a1 = (CompositeState) a; BasedNumberValuation a2 = * (BasedNumberValuation)a1.getComponent(1); if * (a2.getStore().isTop()) System.out.println("Debug TOP Value"); */ precision = pair.getRight(); precisionMap.put(a.getLocation(), precision); // logger.debug("Picked from worklist: " + a.getIdentifier()); // getTransformers() and post() might throw exceptions try { // For each outgoing edge // if (a.isTop()) // System.out.println("Debug TOP"); /* * if * (a.getLocation().getAddress().toString().equals("0x004106cd") * || * (a.getLocation().getAddress().toString().equals("0x00410498") * && a.getLocation().getIndex() >= 0)) * System.out.println("Debug Transformer Factory:" + * a.getLocation().getAddress().toString()); */ // Set<CFAEdge> s = transformerFactory.getTransformers(a); // System.out.println("Debug Transformer Factory:" + // a.getLocation().getAddress().toString()); for (CFAEdge cfaEdge : transformerFactory.getTransformers(a)) { Precision targetPrecision = precisionMap.get(cfaEdge.getTarget()); if (targetPrecision == null) { targetPrecision = cpa.initPrecision(cfaEdge.getTarget(), cfaEdge.getTransformer()); precisionMap.put(cfaEdge.getTarget(), targetPrecision); } // Prefix everything by current location for easier // debugging // Logger.setGlobalPrefix(cfaEdge.getSource().toString()); // if // (cfaEdge.getSource().getAddress().toString().equals("0x00401027") // && // cfaEdge.getTarget().getAddress().toString().equals("0x0040102e")) // System.out.println("Debug Edge"); // Calculate the set of abstract successors Set<AbstractState> successors = cpa.post(a, cfaEdge, targetPrecision); if (successors.isEmpty()) { logger.debug("No successors along edge " + cfaEdge + ", reached halt?"); continue; } // logger.debug("via edge " + cfaEdge.toString() + " " + // successors.size() + " successors."); // Process every successor for (AbstractState succ : successors) { // logger.debug("Processing new post state: " + // succ.getIdentifier()); // Try to merge the new state with an existing one Set<AbstractState> statesToRemove = new FastSet<AbstractState>(); Set<AbstractState> statesToAdd = new FastSet<AbstractState>(); for (AbstractState r : reached.where(0, ((CompositeState) succ).getComponent(0))) { AbstractState merged = cpa.merge(succ, r, targetPrecision); if (!merged.equals(r)) { // logger.debug("Merge of " + // succ.getIdentifier() + " and " + // r.getIdentifier() + " produced new state " + // merged.getIdentifier()); statesToRemove.add(r); statesToAdd.add(merged); } } // replace the old state in worklist and reached with // the merged version for (AbstractState r : statesToRemove) { reached.remove(r); worklist.remove(r); // art.remove(r); } for (AbstractState r : statesToAdd) { // Only add r to the worklist if it hasn't been // reached yet if (reached.add(r)) { worklist.add(r); if (art != null) art.addChild(unadjustedState, r); } } // if not stopped add to worklist if (!cpa.stop(succ, reached, targetPrecision) || this.program.checkSMPos(((CompositeState) succ).getLocation().getAddress())) { worklist.add(succ); reached.add(succ); if (art != null) art.addChild(unadjustedState, succ); } } // end for each outgoing edge } } catch (StateException e) { if (e.getState() == null) { e.setState(a); } if (art != null && !unadjustedState.equals(e.getState())) art.addChild(unadjustedState, e.getState()); throw e; } } long endTime = System.currentTimeMillis(); if (endTime - startTime > 0) { logger.info( "Processed " + statesVisited + " states at " + (1000L * statesVisited / (endTime - startTime)) + " states/second"); logger.info( String.format( "Allocated heap memory: %.2f MByte", (runtime.totalMemory() - runtime.freeMemory()) / (1024.0 * 1024.0))); } completed = worklist.isEmpty(); }