public void testPaul4LogLike() { // create LogLikelihood FCN function PaulTest4.PowerLawLogLikeFCN theFCN = new PaulTest4.PowerLawLogLikeFCN(m, p); MnUserParameters upar = new MnUserParameters(); upar.add("p0", -2.1, 0.2); upar.add("p1", 1000., 10.); MnMigrad migrad = new MnMigrad(theFCN, upar); migrad.setErrorDef(0.5); FunctionMinimum min = migrad.minimize(); if (!min.isValid()) { // try with higher strategy migrad = new MnMigrad(theFCN, upar, 2); min = migrad.minimize(); } assertTrue(min.isValid()); assertEquals(63, min.nfcn()); assertEquals(-1.33678e+09, min.fval(), 1e4); assertEquals(0.0170964, min.edm(), 1e-4); assertEquals(-2.10016, min.userParameters().value(0), 1e-5); assertEquals(999.394, min.userParameters().value(1), 1e-3); assertEquals(0.0001488, min.userParameters().error(0), 1e-7); assertEquals(0.7544, min.userParameters().error(1), 1e-4); assertEquals(2.21365e-08, min.userCovariance().get(0, 0), 1e-13); assertEquals(0.000111025, min.userCovariance().get(1, 0), 1e-9); assertEquals(0.569138, min.userCovariance().get(1, 1), 1e-6); }
public void testPaul4Chi2() { // create Chi2 FCN function PaulTest4.PowerLawChi2FCN theFCN = new PaulTest4.PowerLawChi2FCN(m, p, v); MnUserParameters upar = new MnUserParameters(); upar.add("p0", -2.3, 0.2); upar.add("p1", 1100., 10.); MnMigrad migrad = new MnMigrad(theFCN, upar); FunctionMinimum min = migrad.minimize(); if (!min.isValid()) { migrad = new MnMigrad(theFCN, upar, 2); min = migrad.minimize(); } assertTrue(min.isValid()); assertEquals(102, min.nfcn()); assertEquals(95.243, min.fval(), 1e-3); assertEquals(3.7209e-11, min.edm(), 1e-15); assertEquals(-2.10019, min.userParameters().value(0), 1e-5); assertEquals(999.225, min.userParameters().value(1), 1e-3); assertEquals(0.0001592, min.userParameters().error(0), 1e-7); assertEquals(0.8073, min.userParameters().error(1), 1e-4); assertEquals(2.53567e-08, min.userCovariance().get(0, 0), 1e-13); assertEquals(0.000127332, min.userCovariance().get(1, 0), 1e-9); assertEquals(0.651708, min.userCovariance().get(1, 1), 1e-6); }
public static void main(String[] args) throws IOException { // generate the data (100 data points) // GaussDataGen gdg = new GaussDataGen(100); GaussDataGen gdg = new GaussDataGen(DemoGaussSim.class.getResourceAsStream("GaussDataGen.txt")); double[] pos = gdg.positions(); double[] meas = gdg.measurements(); double[] var = gdg.variances(); // create FCN function GaussFcn theFCN = new GaussFcn(meas, pos, var); // create initial starting values for parameters double x = 0.; double x2 = 0.; double norm = 0.; double dx = pos[1] - pos[0]; double area = 0.; for (int i = 0; i < meas.length; i++) { norm += meas[i]; x += (meas[i] * pos[i]); x2 += (meas[i] * pos[i] * pos[i]); area += dx * meas[i]; } double mean = x / norm; double rms2 = x2 / norm - mean * mean; double rms = rms2 > 0. ? Math.sqrt(rms2) : 1.; System.out.printf("%g %g %g\n", mean, rms, area); { // demonstrate minimal required interface for minimization // create Minuit parameters without names // starting values for parameters double[] init_par = {mean, rms, area}; // starting values for initial uncertainties double[] init_err = {0.1, 0.1, 0.1}; // create minimizer (default constructor) MnMigrad migrad = new MnMigrad(theFCN, init_par, init_err); // minimize FunctionMinimum min = migrad.minimize(); // output System.out.println("minimum: " + min); } { // demonstrate standard minimization using MIGRAD // create Minuit parameters with names MnUserParameters upar = new MnUserParameters(); upar.add("mean", mean, 0.1); upar.add("sigma", rms, 0.1); upar.add("area", area, 0.1); // create MIGRAD minimizer MnMigrad migrad = new MnMigrad(theFCN, upar); // minimize FunctionMinimum min = migrad.minimize(); // output System.out.println("minimum: " + min); } { // demonstrate full interaction with parameters over subsequent // minimizations // create Minuit parameters with names MnUserParameters upar = new MnUserParameters(); upar.add("mean", mean, 0.1); upar.add("sigma", rms, 0.1); upar.add("area", area, 0.1); // access parameter by name to set limits... upar.setLimits("mean", mean - 0.01, mean + 0.01); // ... or access parameter by index upar.setLimits(1, rms - 0.1, rms + 0.1); // create Migrad minimizer MnMigrad migrad = new MnMigrad(theFCN, upar); // fix a parameter... migrad.fix("mean"); // ... and minimize FunctionMinimum min = migrad.minimize(); // output System.out.println("minimum: " + min); // release a parameter... migrad.release("mean"); // ... and fix another one migrad.fix(1); // and minimize again FunctionMinimum min1 = migrad.minimize(); // output System.out.println("minimum: " + min1); // release the parameter... migrad.release(1); // ... and minimize with all three parameters (still with limits!) FunctionMinimum min2 = migrad.minimize(); // output System.out.println("minimum: " + min2); // remove all limits on parameters... migrad.removeLimits("mean"); migrad.removeLimits("sigma"); // ... and minimize again with all three parameters (now without limits!) FunctionMinimum min3 = migrad.minimize(); // output System.out.println("minimum: " + min3); } { // test single sided limits MnUserParameters upar = new MnUserParameters(); upar.add("mean", mean, 0.1); upar.add("sigma", rms - 1., 0.1); upar.add("area", area, 0.1); // test lower limits upar.setLowerLimit("mean", mean - 0.01); // test upper limits upar.setUpperLimit("sigma", rms - 0.5); // create MIGRAD minimizer MnMigrad migrad = new MnMigrad(theFCN, upar); // ... and minimize FunctionMinimum min = migrad.minimize(); System.out.println("test lower limit minimim= " + min); } { // demonstrate MINOS error analysis // create Minuit parameters with names MnUserParameters upar = new MnUserParameters(); upar.add("mean", mean, 0.1); upar.add("sigma", rms, 0.1); upar.add("area", area, 0.1); // create Migrad minimizer MnMigrad migrad = new MnMigrad(theFCN, upar); // minimize FunctionMinimum min = migrad.minimize(); // create MINOS error factory MnMinos minos = new MnMinos(theFCN, min); { // 1-sigma MINOS errors (minimal interface) // output System.out.println("1-sigma minos errors: "); System.out.printf( "par0: %g %g %g\n", min.userState().value("mean"), minos.lower(0), minos.upper(0)); System.out.printf( "par1: %g %g %g\n", min.userState().value(1), minos.lower(1), minos.upper(1)); System.out.printf( "par2: %g %g %g\n", min.userState().value("area"), minos.lower(2), minos.upper(2)); } { // 2-sigma MINOS errors (rich interface) MinosError e0 = minos.minos(0, 4.); MinosError e1 = minos.minos(1, 4.); MinosError e2 = minos.minos(2, 4.); // output System.out.println("2-sigma minos errors: "); System.out.println(e0); System.out.println(e1); System.out.println(e2); } } { // demonstrate how to use the CONTOURs // create Minuit parameters with names MnUserParameters upar = new MnUserParameters(); upar.add("mean", mean, 0.1); upar.add("sigma", rms, 0.1); upar.add("area", area, 0.1); // create Migrad minimizer MnMigrad migrad = new MnMigrad(theFCN, upar); // minimize FunctionMinimum min = migrad.minimize(); // create contours factory with FCN and minimum MnContours contours = new MnContours(theFCN, min); // 70% confidence level for 2 parameters contour around the minimum // (minimal interface) List<Point> cont = contours.points(0, 1, 2.41, 20); // 95% confidence level for 2 parameters contour // (rich interface) ContoursError cont4 = contours.contour(0, 1, 5.99, 20); // plot the contours MnPlot plot = new MnPlot(); cont.addAll(cont4.points()); plot.plot(min.userState().value("mean"), min.userState().value("sigma"), cont); // print out one contour System.out.println(cont4); } }