public void testAnalyze() { BasicNetwork network = EncogUtility.simpleFeedForward(2, 2, 0, 1, false); double[] weights = new double[network.encodedArrayLength()]; EngineArray.fill(weights, 1.0); network.decodeFromArray(weights); AnalyzeNetwork analyze = new AnalyzeNetwork(network); Assert.assertEquals(weights.length, analyze.getWeightsAndBias().getSamples()); Assert.assertEquals(3, analyze.getBias().getSamples()); Assert.assertEquals(6, analyze.getWeights().getSamples()); }
/** Finalize the structure of this Bayesian network. */ public void finalizeStructure() { for (BayesianEvent e : this.eventMap.values()) { e.finalizeStructure(); } if (this.query != null) { this.query.finalizeStructure(); } this.inputPresent = new boolean[this.events.size()]; EngineArray.fill(this.inputPresent, true); this.classificationTarget = -1; }
/** Clear the weight matrix. */ public void clearMatrix() { EngineArray.fill(this.hopfield.getWeights(), 0); }