/** {@inheritDoc} */ @Override public final void write(final double[] input, final double[] ideal, final double significance) { final StringBuilder builder = new StringBuilder(); builder.append("1"); builder.append(":"); builder.append(this.inputCount + this.idealCount); this.xmlOut.addAttribute("spans", builder.toString()); this.xmlOut.addAttribute("r", "" + (this.row++)); this.xmlOut.beginTag("row"); int index = 0; for (int i = 0; i < this.inputCount; i++) { this.xmlOut.addAttribute("r", toColumn(index++)); this.xmlOut.beginTag("c"); this.xmlOut.beginTag("v"); this.xmlOut.addText(CSVFormat.EG_FORMAT.format(input[i], Encog.DEFAULT_PRECISION)); this.xmlOut.endTag(); this.xmlOut.endTag(); } for (int i = 0; i < this.idealCount; i++) { this.xmlOut.addAttribute("r", toColumn(index++)); this.xmlOut.beginTag("c"); this.xmlOut.beginTag("v"); this.xmlOut.addText(CSVFormat.EG_FORMAT.format(ideal[i], Encog.DEFAULT_PRECISION)); this.xmlOut.endTag(); this.xmlOut.endTag(); } this.xmlOut.endTag(); }
/** * Generate a table, in BIF format. * * @param event The event to write. * @return The string form of the table. */ public static String generateTable(BayesianEvent event) { StringBuilder s = new StringBuilder(); int tableIndex = 0; int[] args = new int[event.getParents().size()]; do { for (int result = 0; result < event.getChoices().size(); result++) { TableLine line = event.getTable().findLine(result, args); if (s.length() > 0) { s.append(" "); } s.append(CSVFormat.EG_FORMAT.format(line.getProbability(), Encog.DEFAULT_PRECISION)); } } while (BIFUtil.rollArgs(event, args)); return s.toString(); }
private String renderNode(ProgramNode node) { StringBuilder result = new StringBuilder(); for (int i = 0; i < node.getChildNodes().size(); i++) { ProgramNode childNode = node.getChildNode(i); result.append(renderNode(childNode)); } result.append('['); result.append(node.getName()); result.append(':'); result.append(node.getTemplate().getChildNodeCount()); for (int i = 0; i < node.getTemplate().getDataSize(); i++) { result.append(':'); ValueType t = node.getData()[i].getExpressionType(); if (t == ValueType.booleanType) { result.append(node.getData()[i].toBooleanValue() ? 't' : 'f'); } else if (t == ValueType.floatingType) { result.append( CSVFormat.EG_FORMAT.format(node.getData()[i].toFloatValue(), Encog.DEFAULT_PRECISION)); } else if (t == ValueType.intType) { result.append(node.getData()[i].toIntValue()); } else if (t == ValueType.enumType) { result.append(node.getData()[i].getEnumType()); result.append("#"); result.append(node.getData()[i].toIntValue()); } else if (t == ValueType.stringType) { result.append("\""); result.append(node.getData()[i].toStringValue()); result.append("\""); } } result.append(']'); return result.toString().trim(); }
/** * Define a probability. * * @param line The line to define the probability. */ public void defineProbability(String line) { int index = line.lastIndexOf('='); boolean error = false; double prob = 0.0; String left = ""; String right = ""; if (index != -1) { left = line.substring(0, index); right = line.substring(index + 1); try { prob = CSVFormat.EG_FORMAT.parse(right); } catch (NumberFormatException ex) { error = true; } } if (error || index == -1) { throw new BayesianError( "Probability must be of the form \"P(event|condition1,condition2,etc.)=0.5\". Conditions are optional."); } defineProbability(left, prob); }
/** * Set a property as a double. * * @param name The name of the property. * @param d The value of the property. */ @Override public void setProperty(final String name, final double d) { this.properties.put(name, "" + CSVFormat.EG_FORMAT.format(d, Encog.DEFAULT_PRECISION)); updateProperties(); }
/** {@inheritDoc} */ @Override public Object read(final InputStream is) { final BasicNetwork result = new BasicNetwork(); final FlatNetwork flat = new FlatNetwork(); final EncogReadHelper in = new EncogReadHelper(is); EncogFileSection section; while ((section = in.readNextSection()) != null) { if (section.getSectionName().equals("BASIC") && section.getSubSectionName().equals("PARAMS")) { final Map<String, String> params = section.parseParams(); result.getProperties().putAll(params); } if (section.getSectionName().equals("BASIC") && section.getSubSectionName().equals("NETWORK")) { final Map<String, String> params = section.parseParams(); flat.setBeginTraining(EncogFileSection.parseInt(params, BasicNetwork.TAG_BEGIN_TRAINING)); flat.setConnectionLimit( EncogFileSection.parseDouble(params, BasicNetwork.TAG_CONNECTION_LIMIT)); flat.setContextTargetOffset( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_CONTEXT_TARGET_OFFSET)); flat.setContextTargetSize( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_CONTEXT_TARGET_SIZE)); flat.setEndTraining(EncogFileSection.parseInt(params, BasicNetwork.TAG_END_TRAINING)); flat.setHasContext(EncogFileSection.parseBoolean(params, BasicNetwork.TAG_HAS_CONTEXT)); flat.setInputCount(EncogFileSection.parseInt(params, PersistConst.INPUT_COUNT)); flat.setLayerCounts(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_COUNTS)); flat.setLayerFeedCounts( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_FEED_COUNTS)); flat.setLayerContextCount( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_CONTEXT_COUNT)); flat.setLayerIndex(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_INDEX)); flat.setLayerOutput(section.parseDoubleArray(params, PersistConst.OUTPUT)); flat.setLayerSums(new double[flat.getLayerOutput().length]); flat.setOutputCount(EncogFileSection.parseInt(params, PersistConst.OUTPUT_COUNT)); flat.setWeightIndex(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_WEIGHT_INDEX)); flat.setWeights(section.parseDoubleArray(params, PersistConst.WEIGHTS)); flat.setBiasActivation(section.parseDoubleArray(params, BasicNetwork.TAG_BIAS_ACTIVATION)); } else if (section.getSectionName().equals("BASIC") && section.getSubSectionName().equals("ACTIVATION")) { int index = 0; flat.setActivationFunctions(new ActivationFunction[flat.getLayerCounts().length]); for (final String line : section.getLines()) { ActivationFunction af = null; final List<String> cols = EncogFileSection.splitColumns(line); // if this is a class name with a path, then do not default to inside of the Encog // package. String name; if (cols.get(0).indexOf('.') != -1) { name = cols.get(0); } else { name = "org.encog.engine.network.activation." + cols.get(0); } try { final Class<?> clazz = Class.forName(name); af = (ActivationFunction) clazz.newInstance(); } catch (final ClassNotFoundException e) { throw new PersistError(e); } catch (final InstantiationException e) { throw new PersistError(e); } catch (final IllegalAccessException e) { throw new PersistError(e); } for (int i = 0; i < af.getParamNames().length; i++) { af.setParam(i, CSVFormat.EG_FORMAT.parse(cols.get(i + 1))); } flat.getActivationFunctions()[index++] = af; } } } result.getStructure().setFlat(flat); result.updateProperties(); return result; }
@Override public Object read(final InputStream is) { long nextInnovationID = 0; long nextGeneID = 0; final NEATPopulation result = new NEATPopulation(); final NEATInnovationList innovationList = new NEATInnovationList(); innovationList.setPopulation(result); result.setInnovations(innovationList); final EncogReadHelper in = new EncogReadHelper(is); EncogFileSection section; while ((section = in.readNextSection()) != null) { if (section.getSectionName().equals("NEAT-POPULATION") && section.getSubSectionName().equals("INNOVATIONS")) { for (final String line : section.getLines()) { final List<String> cols = EncogFileSection.splitColumns(line); final NEATInnovation innovation = new NEATInnovation(); final int innovationID = Integer.parseInt(cols.get(1)); innovation.setInnovationID(innovationID); innovation.setNeuronID(Integer.parseInt(cols.get(2))); result.getInnovations().getInnovations().put(cols.get(0), innovation); nextInnovationID = Math.max(nextInnovationID, innovationID + 1); } } else if (section.getSectionName().equals("NEAT-POPULATION") && section.getSubSectionName().equals("SPECIES")) { NEATGenome lastGenome = null; BasicSpecies lastSpecies = null; for (final String line : section.getLines()) { final List<String> cols = EncogFileSection.splitColumns(line); if (cols.get(0).equalsIgnoreCase("s")) { lastSpecies = new BasicSpecies(); lastSpecies.setPopulation(result); lastSpecies.setAge(Integer.parseInt(cols.get(1))); lastSpecies.setBestScore(CSVFormat.EG_FORMAT.parse(cols.get(2))); lastSpecies.setGensNoImprovement(Integer.parseInt(cols.get(3))); result.getSpecies().add(lastSpecies); } else if (cols.get(0).equalsIgnoreCase("g")) { final boolean isLeader = lastGenome == null; lastGenome = new NEATGenome(); lastGenome.setInputCount(result.getInputCount()); lastGenome.setOutputCount(result.getOutputCount()); lastGenome.setSpecies(lastSpecies); lastGenome.setAdjustedScore(CSVFormat.EG_FORMAT.parse(cols.get(1))); lastGenome.setScore(CSVFormat.EG_FORMAT.parse(cols.get(2))); lastGenome.setBirthGeneration(Integer.parseInt(cols.get(3))); lastSpecies.add(lastGenome); if (isLeader) { lastSpecies.setLeader(lastGenome); } } else if (cols.get(0).equalsIgnoreCase("n")) { final NEATNeuronGene neuronGene = new NEATNeuronGene(); final int geneID = Integer.parseInt(cols.get(1)); neuronGene.setId(geneID); final ActivationFunction af = EncogFileSection.parseActivationFunction(cols.get(2)); neuronGene.setActivationFunction(af); neuronGene.setNeuronType(PersistNEATPopulation.stringToNeuronType(cols.get(3))); neuronGene.setInnovationId(Integer.parseInt(cols.get(4))); lastGenome.getNeuronsChromosome().add(neuronGene); nextGeneID = Math.max(geneID + 1, nextGeneID); } else if (cols.get(0).equalsIgnoreCase("l")) { final NEATLinkGene linkGene = new NEATLinkGene(); linkGene.setId(Integer.parseInt(cols.get(1))); linkGene.setEnabled(Integer.parseInt(cols.get(2)) > 0); linkGene.setFromNeuronID(Integer.parseInt(cols.get(3))); linkGene.setToNeuronID(Integer.parseInt(cols.get(4))); linkGene.setWeight(CSVFormat.EG_FORMAT.parse(cols.get(5))); linkGene.setInnovationId(Integer.parseInt(cols.get(6))); lastGenome.getLinksChromosome().add(linkGene); } } } else if (section.getSectionName().equals("NEAT-POPULATION") && section.getSubSectionName().equals("CONFIG")) { final Map<String, String> params = section.parseParams(); final String afStr = params.get(NEATPopulation.PROPERTY_NEAT_ACTIVATION); if (afStr.equalsIgnoreCase(PersistNEATPopulation.TYPE_CPPN)) { HyperNEATGenome.buildCPPNActivationFunctions(result.getActivationFunctions()); } else { result.setNEATActivationFunction( EncogFileSection.parseActivationFunction( params, NEATPopulation.PROPERTY_NEAT_ACTIVATION)); } result.setActivationCycles( EncogFileSection.parseInt(params, PersistConst.ACTIVATION_CYCLES)); result.setInputCount(EncogFileSection.parseInt(params, PersistConst.INPUT_COUNT)); result.setOutputCount(EncogFileSection.parseInt(params, PersistConst.OUTPUT_COUNT)); result.setPopulationSize( EncogFileSection.parseInt(params, NEATPopulation.PROPERTY_POPULATION_SIZE)); result.setSurvivalRate( EncogFileSection.parseDouble(params, NEATPopulation.PROPERTY_SURVIVAL_RATE)); result.setActivationCycles( EncogFileSection.parseInt(params, NEATPopulation.PROPERTY_CYCLES)); } } // set factories if (result.isHyperNEAT()) { result.setGenomeFactory(new FactorHyperNEATGenome()); result.setCODEC(new HyperNEATCODEC()); } else { result.setGenomeFactory(new FactorNEATGenome()); result.setCODEC(new NEATCODEC()); } // set the next ID's result.getInnovationIDGenerate().setCurrentID(nextInnovationID); result.getGeneIDGenerate().setCurrentID(nextGeneID); // find first genome, which should be the best genome if (result.getSpecies().size() > 0) { final Species species = result.getSpecies().get(0); if (species.getMembers().size() > 0) { result.setBestGenome(species.getMembers().get(0)); } } return result; }
/** {@inheritDoc} */ @Override public Object read(final InputStream is) { final RBFNetwork result = new RBFNetwork(); final FlatNetworkRBF flat = (FlatNetworkRBF) result.getFlat(); final EncogReadHelper in = new EncogReadHelper(is); EncogFileSection section; while ((section = in.readNextSection()) != null) { if (section.getSectionName().equals("RBF-NETWORK") && section.getSubSectionName().equals("PARAMS")) { final Map<String, String> params = section.parseParams(); result.getProperties().putAll(params); } if (section.getSectionName().equals("RBF-NETWORK") && section.getSubSectionName().equals("NETWORK")) { final Map<String, String> params = section.parseParams(); flat.setBeginTraining(EncogFileSection.parseInt(params, BasicNetwork.TAG_BEGIN_TRAINING)); flat.setConnectionLimit( EncogFileSection.parseDouble(params, BasicNetwork.TAG_CONNECTION_LIMIT)); flat.setContextTargetOffset( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_CONTEXT_TARGET_OFFSET)); flat.setContextTargetSize( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_CONTEXT_TARGET_SIZE)); flat.setEndTraining(EncogFileSection.parseInt(params, BasicNetwork.TAG_END_TRAINING)); flat.setHasContext(EncogFileSection.parseBoolean(params, BasicNetwork.TAG_HAS_CONTEXT)); flat.setInputCount(EncogFileSection.parseInt(params, PersistConst.INPUT_COUNT)); flat.setLayerCounts(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_COUNTS)); flat.setLayerFeedCounts( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_FEED_COUNTS)); flat.setLayerContextCount( EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_CONTEXT_COUNT)); flat.setLayerIndex(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_LAYER_INDEX)); flat.setLayerOutput(section.parseDoubleArray(params, PersistConst.OUTPUT)); flat.setLayerSums(new double[flat.getLayerOutput().length]); flat.setOutputCount(EncogFileSection.parseInt(params, PersistConst.OUTPUT_COUNT)); flat.setWeightIndex(EncogFileSection.parseIntArray(params, BasicNetwork.TAG_WEIGHT_INDEX)); flat.setWeights(section.parseDoubleArray(params, PersistConst.WEIGHTS)); flat.setBiasActivation(section.parseDoubleArray(params, BasicNetwork.TAG_BIAS_ACTIVATION)); } else if (section.getSectionName().equals("RBF-NETWORK") && section.getSubSectionName().equals("ACTIVATION")) { int index = 0; flat.setActivationFunctions(new ActivationFunction[flat.getLayerCounts().length]); for (final String line : section.getLines()) { ActivationFunction af = null; final List<String> cols = EncogFileSection.splitColumns(line); final String name = "org.encog.engine.network.activation." + cols.get(0); try { final Class<?> clazz = Class.forName(name); af = (ActivationFunction) clazz.newInstance(); } catch (final ClassNotFoundException e) { throw new PersistError(e); } catch (final InstantiationException e) { throw new PersistError(e); } catch (final IllegalAccessException e) { throw new PersistError(e); } for (int i = 0; i < af.getParamNames().length; i++) { af.setParam(i, CSVFormat.EG_FORMAT.parse(cols.get(i + 1))); } flat.getActivationFunctions()[index++] = af; } } else if (section.getSectionName().equals("RBF-NETWORK") && section.getSubSectionName().equals("RBF")) { int index = 0; final int hiddenCount = flat.getLayerCounts()[1]; final int inputCount = flat.getLayerCounts()[2]; flat.setRBF(new RadialBasisFunction[hiddenCount]); for (final String line : section.getLines()) { RadialBasisFunction rbf = null; final List<String> cols = EncogFileSection.splitColumns(line); final String name = "org.encog.mathutil.rbf." + cols.get(0); try { final Class<?> clazz = Class.forName(name); rbf = (RadialBasisFunction) clazz.newInstance(); } catch (final ClassNotFoundException e) { throw new PersistError(e); } catch (final InstantiationException e) { throw new PersistError(e); } catch (final IllegalAccessException e) { throw new PersistError(e); } rbf.setWidth(CSVFormat.EG_FORMAT.parse(cols.get(1))); rbf.setPeak(CSVFormat.EG_FORMAT.parse(cols.get(2))); rbf.setCenters(new double[inputCount]); for (int i = 0; i < inputCount; i++) { rbf.getCenters()[i] = CSVFormat.EG_FORMAT.parse(cols.get(i + 3)); } flat.getRBF()[index++] = rbf; } } } return result; }