public static double calculateRegressionError(MLRegression method, MLDataSet data) { final ErrorCalculation errorCalculation = new ErrorCalculation(); if (method instanceof MLContext) ((MLContext) method).clearContext(); for (final MLDataPair pair : data) { final MLData actual = method.compute(pair.getInput()); errorCalculation.updateError( actual.getData(), pair.getIdeal().getData(), pair.getSignificance()); } return errorCalculation.calculate(); }
/** * Evaluate the network and display (to the console) the output for every value in the training * set. Displays ideal and actual. * * @param network The network to evaluate. * @param training The training set to evaluate. */ public static void evaluate(final MLRegression network, final MLDataSet training) { for (final MLDataPair pair : training) { final MLData output = network.compute(pair.getInput()); System.out.println( "Input=" + EncogUtility.formatNeuralData(pair.getInput()) + ", Actual=" + EncogUtility.formatNeuralData(output) + ", Ideal=" + EncogUtility.formatNeuralData(pair.getIdeal())); } }