/** * Write a Bayesian network to an output stream in BIF format. * * @param os The output stream to write to. * @param network The network to write. */ public static void writeBIF(OutputStream os, BayesianNetwork network) { WriteXML xml = new WriteXML(os); xml.beginDocument(); xml.addAttribute("VERSION", "0.3"); xml.beginTag("BIF"); xml.beginTag("NETWORK"); xml.addProperty("NAME", "Bayes Network, Generated by Encog"); // write variables for (BayesianEvent event : network.getEvents()) { xml.addAttribute("TYPE", "nature"); xml.beginTag("VARIABLE"); xml.addProperty("NAME", event.getLabel()); for (BayesianChoice str : event.getChoices()) { xml.addProperty("OUTCOME", str.getLabel()); } xml.endTag(); } // write relations for (BayesianEvent event : network.getEvents()) { xml.beginTag("DEFINITION"); xml.addProperty("FOR", event.getLabel()); for (BayesianEvent parentEvent : event.getParents()) { xml.addProperty("GIVEN", parentEvent.getLabel()); } xml.addAttribute("TABLE", generateTable(event)); xml.endTag(); } xml.endTag(); xml.endTag(); xml.endDocument(); }
/** {@inheritDoc} */ @Override public final Object read(final InputStream is) { final BayesianNetwork result = new BayesianNetwork(); final EncogReadHelper in = new EncogReadHelper(is); EncogFileSection section; String queryType = ""; String queryStr = ""; String contentsStr = ""; while ((section = in.readNextSection()) != null) { if (section.getSectionName().equals("BAYES-NETWORK") && section.getSubSectionName().equals("BAYES-PARAM")) { final Map<String, String> params = section.parseParams(); queryType = params.get("queryType"); queryStr = params.get("query"); contentsStr = params.get("contents"); } if (section.getSectionName().equals("BAYES-NETWORK") && section.getSubSectionName().equals("BAYES-TABLE")) { result.setContents(contentsStr); // first, define relationships (1st pass) for (String line : section.getLines()) { result.defineRelationship(line); } result.finalizeStructure(); // now define the probabilities (2nd pass) for (String line : section.getLines()) { result.defineProbability(line); } } if (section.getSectionName().equals("BAYES-NETWORK") && section.getSubSectionName().equals("BAYES-PROPERTIES")) { final Map<String, String> params = section.parseParams(); result.getProperties().putAll(params); } } // define query, if it exists if (queryType.length() > 0) { BayesianQuery query = null; if (queryType.equals("EnumerationQuery")) { query = new EnumerationQuery(result); } else { query = new SamplingQuery(result); } if (query != null && queryStr.length() > 0) { result.setQuery(query); result.defineClassificationStructure(queryStr); } } return result; }
public void testSampling3() { BayesianNetwork network = new BayesianNetwork(); BayesianEvent a = network.createEvent("a"); BayesianEvent x1 = network.createEvent("x1"); BayesianEvent x2 = network.createEvent("x2"); BayesianEvent x3 = network.createEvent("x3"); network.createDependancy(a, x1, x2, x3); network.finalizeStructure(); a.getTable().addLine(0.5, true); // P(A) = 0.5 x1.getTable().addLine(0.2, true, true); // p(x1|a) = 0.2 x1.getTable().addLine(0.6, true, false); // p(x1|~a) = 0.6 x2.getTable().addLine(0.2, true, true); // p(x2|a) = 0.2 x2.getTable().addLine(0.6, true, false); // p(x2|~a) = 0.6 x3.getTable().addLine(0.2, true, true); // p(x3|a) = 0.2 x3.getTable().addLine(0.6, true, false); // p(x3|~a) = 0.6 network.validate(); SamplingQuery query = new SamplingQuery(network); query.defineEventType(x1, EventType.Evidence); query.defineEventType(x3, EventType.Outcome); query.setEventValue(x1, true); query.setEventValue(x3, true); query.execute(); testPercent(query.getProbability(), 50); }
public void testSampling1() { BayesianNetwork network = new BayesianNetwork(); BayesianEvent a = network.createEvent("a"); BayesianEvent b = network.createEvent("b"); network.createDependancy(a, b); network.finalizeStructure(); a.getTable().addLine(0.5, true); // P(A) = 0.5 b.getTable().addLine(0.2, true, true); // p(b|a) = 0.2 b.getTable().addLine(0.8, true, false); // p(b|~a) = 0.8 network.validate(); SamplingQuery query = new SamplingQuery(network); query.defineEventType(a, EventType.Evidence); query.defineEventType(b, EventType.Outcome); query.setEventValue(b, true); query.setEventValue(a, true); query.execute(); testPercent(query.getProbability(), 20); }
/** {@inheritDoc} */ @Override public final void save(final OutputStream os, final Object obj) { final EncogWriteHelper out = new EncogWriteHelper(os); final BayesianNetwork b = (BayesianNetwork) obj; out.addSection("BAYES-NETWORK"); out.addSubSection("BAYES-PARAM"); String queryType = ""; String queryStr = b.getClassificationStructure(); if (b.getQuery() != null) { queryType = b.getQuery().getClass().getSimpleName(); } out.writeProperty("queryType", queryType); out.writeProperty("query", queryStr); out.writeProperty("contents", b.getContents()); out.addSubSection("BAYES-PROPERTIES"); out.addProperties(b.getProperties()); out.addSubSection("BAYES-TABLE"); for (BayesianEvent event : b.getEvents()) { for (TableLine line : event.getTable().getLines()) { if (line == null) continue; StringBuilder str = new StringBuilder(); str.append("P("); str.append(BayesianEvent.formatEventName(event, line.getResult())); if (event.getParents().size() > 0) { str.append("|"); } int index = 0; boolean first = true; for (BayesianEvent parentEvent : event.getParents()) { if (!first) { str.append(","); } first = false; int arg = line.getArguments()[index++]; if (parentEvent.isBoolean()) { if (arg == 0) { str.append("+"); } else { str.append("-"); } } str.append(parentEvent.getLabel()); if (!parentEvent.isBoolean()) { str.append("="); if (arg >= parentEvent.getChoices().size()) { throw new BayesianError( "Argument value " + arg + " is out of range for event " + parentEvent.toString()); } str.append(parentEvent.getChoice(arg)); } } str.append(")="); str.append(line.getProbability()); str.append("\n"); out.write(str.toString()); } } out.flush(); }