@Before
  public void setupOrg() {

    originalShardSize = ConfigurationManager.getConfigInstance().getProperty(GraphFig.SHARD_SIZE);

    originalShardTimeout =
        ConfigurationManager.getConfigInstance().getProperty(GraphFig.SHARD_CACHE_TIMEOUT);

    originalShardDelta =
        ConfigurationManager.getConfigInstance().getProperty(GraphFig.SHARD_MIN_DELTA);

    ConfigurationManager.getConfigInstance().setProperty(GraphFig.SHARD_SIZE, 500);

    final long cacheTimeout = 2000;
    // set our cache timeout to the above value
    ConfigurationManager.getConfigInstance()
        .setProperty(GraphFig.SHARD_CACHE_TIMEOUT, cacheTimeout);

    final long minDelta = (long) (cacheTimeout * 2.5);

    ConfigurationManager.getConfigInstance().setProperty(GraphFig.SHARD_MIN_DELTA, minDelta);

    // get the system property of the UUID to use.  If one is not set, use the defualt
    String uuidString = System.getProperty("org.id", "80a42760-b699-11e3-a5e2-0800200c9a66");

    scope = new ApplicationScopeImpl(IdGenerator.createId(UUID.fromString(uuidString), "test"));

    reporter =
        Slf4jReporter.forRegistry(registry)
            .outputTo(logger)
            .convertRatesTo(TimeUnit.SECONDS)
            .convertDurationsTo(TimeUnit.MILLISECONDS)
            .build();

    reporter.start(10, TimeUnit.SECONDS);
  }
  @Test(timeout = 120000)
  @Category(StressTest.class)
  public void writeThousandsDelete()
      throws InterruptedException, ExecutionException, MigrationException,
          UnsupportedEncodingException {

    final Id sourceId = IdGenerator.createId("source");
    final String edgeType = "test";

    final EdgeGenerator generator =
        new EdgeGenerator() {

          @Override
          public Edge newEdge() {
            Edge edge = createEdge(sourceId, edgeType, IdGenerator.createId("target"));

            return edge;
          }

          @Override
          public Observable<MarkedEdge> doSearch(final GraphManager manager) {
            return manager.loadEdgesFromSource(
                new SimpleSearchByEdgeType(
                    sourceId,
                    edgeType,
                    Long.MAX_VALUE,
                    SearchByEdgeType.Order.DESCENDING,
                    Optional.<Edge>absent(),
                    false));
          }
        };

    //        final int numInjectors = 2;
    final int numInjectors = 1;

    /**
     * create 3 injectors. This way all the caches are independent of one another. This is the same
     * as multiple nodes
     */
    final List<Injector> injectors = createInjectors(numInjectors);

    final GraphFig graphFig = getInstance(injectors, GraphFig.class);

    final long shardSize = graphFig.getShardSize();

    // we don't want to starve the cass runtime since it will be on the same box. Only take 50% of
    // processing
    // power for writes
    final int numProcessors = Runtime.getRuntime().availableProcessors() / 2;

    final int numWorkersPerInjector = numProcessors / numInjectors;

    /** Do 4x shard size so we should have approximately 4 shards */
    final long numberOfEdges = shardSize * 4;

    final long workerWriteLimit = numberOfEdges / numWorkersPerInjector / numInjectors;

    createExecutor(numWorkersPerInjector);

    final AtomicLong writeCounter = new AtomicLong();

    // min stop time the min delta + 1 cache cycle timeout
    final long minExecutionTime = graphFig.getShardMinDelta() + graphFig.getShardCacheTimeout();

    logger.info(
        "Writing {} edges per worker on {} workers in {} injectors",
        workerWriteLimit,
        numWorkersPerInjector,
        numInjectors);

    final List<Future<Boolean>> futures = new ArrayList<>();

    for (Injector injector : injectors) {
      final GraphManagerFactory gmf = injector.getInstance(GraphManagerFactory.class);

      for (int i = 0; i < numWorkersPerInjector; i++) {
        Future<Boolean> future =
            executor.submit(
                new Worker(gmf, generator, workerWriteLimit, minExecutionTime, writeCounter));

        futures.add(future);
      }
    }

    /** Wait for all writes to complete */
    for (Future<Boolean> future : futures) {
      future.get();
    }

    // now get all our shards
    final NodeShardCache cache = getInstance(injectors, NodeShardCache.class);

    final DirectedEdgeMeta directedEdgeMeta = DirectedEdgeMeta.fromSourceNode(sourceId, edgeType);

    // now submit the readers.
    final GraphManagerFactory gmf = getInstance(injectors, GraphManagerFactory.class);

    final long writeCount = writeCounter.get();
    final Meter readMeter = registry.meter("readThroughput");

    // check our shard state

    final Iterator<ShardEntryGroup> existingShardGroups =
        cache.getReadShardGroup(scope, Long.MAX_VALUE, directedEdgeMeta);
    int shardCount = 0;

    while (existingShardGroups.hasNext()) {
      final ShardEntryGroup group = existingShardGroups.next();

      shardCount++;

      logger.info(
          "Compaction pending status for group {} is {}", group, group.isCompactionPending());
    }

    logger.info("found {} shard groups", shardCount);

    // now mark and delete all the edges

    final GraphManager manager = gmf.createEdgeManager(scope);

    // sleep occasionally to stop pushing cassandra over

    long count = Long.MAX_VALUE;

    while (count != 0) {
      // take 10000 then sleep
      count =
          generator
              .doSearch(manager)
              .onBackpressureBlock()
              .take(1000)
              .flatMap(edge -> manager.markEdge(edge))
              .flatMap(edge -> manager.deleteEdge(edge))
              .countLong()
              .toBlocking()
              .last();

      Thread.sleep(500);
    }

    // now loop until with a reader until our shards are gone

    /** Start reading continuously while we migrate data to ensure our view is always correct */
    final ListenableFuture<Long> future =
        executor.submit(new ReadWorker(gmf, generator, 0, readMeter));

    final List<Throwable> failures = new ArrayList<>();

    // add the future
    Futures.addCallback(
        future,
        new FutureCallback<Long>() {

          @Override
          public void onSuccess(@Nullable final Long result) {
            logger.info("Successfully ran the read, re-running");
            executor.submit(new ReadWorker(gmf, generator, writeCount, readMeter));
          }

          @Override
          public void onFailure(final Throwable t) {
            failures.add(t);
            logger.error("Failed test!", t);
          }
        });

    // now start our readers

    while (true) {

      if (!failures.isEmpty()) {

        StringBuilder builder = new StringBuilder();

        builder.append("Read runner failed!\n");

        for (Throwable t : failures) {
          builder.append("Exception is: ");
          ByteArrayOutputStream output = new ByteArrayOutputStream();

          t.printStackTrace(new PrintWriter(output));

          builder.append(output.toString("UTF-8"));
          builder.append("\n\n");
        }

        fail(builder.toString());
      }

      // reset our count.  Ultimately we'll have 4 groups once our compaction completes
      shardCount = 0;

      // we have to get it from the cache, because this will trigger the compaction process
      final Iterator<ShardEntryGroup> groups =
          cache.getReadShardGroup(scope, Long.MAX_VALUE, directedEdgeMeta);

      ShardEntryGroup group = null;

      while (groups.hasNext()) {

        group = groups.next();

        logger.info("Shard size for group is {}", group.getReadShards());

        shardCount += group.getReadShards().size();
      }

      // we're done, 1 shard remains, we have a group, and it's our default shard
      if (shardCount == 1
          && group != null
          && group.getMinShard().getShardIndex() == Shard.MIN_SHARD.getShardIndex()) {
        logger.info("All compactions complete,");

        break;
      }

      Thread.sleep(2000);
    }

    // now that we have finished expanding s

    executor.shutdownNow();
  }
  @Test
  public void writeThousandsSingleSource()
      throws InterruptedException, ExecutionException, MigrationException,
          UnsupportedEncodingException {

    final Id sourceId = IdGenerator.createId("source");
    final String edgeType = "test";

    final EdgeGenerator generator =
        new EdgeGenerator() {

          @Override
          public Edge newEdge() {
            Edge edge = createEdge(sourceId, edgeType, IdGenerator.createId("target"));

            return edge;
          }

          @Override
          public Observable<MarkedEdge> doSearch(final GraphManager manager) {
            return manager.loadEdgesFromSource(
                new SimpleSearchByEdgeType(
                    sourceId,
                    edgeType,
                    Long.MAX_VALUE,
                    SearchByEdgeType.Order.DESCENDING,
                    Optional.<Edge>absent()));
          }
        };

    //        final int numInjectors = 2;
    final int numInjectors = 1;

    /**
     * create 3 injectors. This way all the caches are independent of one another. This is the same
     * as multiple nodes
     */
    final List<Injector> injectors = createInjectors(numInjectors);

    final GraphFig graphFig = getInstance(injectors, GraphFig.class);

    final long shardSize = graphFig.getShardSize();

    // we don't want to starve the cass runtime since it will be on the same box. Only take 50% of
    // processing
    // power for writes
    final int numProcessors = Runtime.getRuntime().availableProcessors() / 2;

    final int numWorkersPerInjector = numProcessors / numInjectors;

    /** Do 4x shard size so we should have approximately 4 shards */
    final long numberOfEdges = shardSize * 4;

    final long workerWriteLimit = numberOfEdges / numWorkersPerInjector / numInjectors;

    final long expectedShardCount = numberOfEdges / shardSize;

    createExecutor(numWorkersPerInjector);

    final AtomicLong writeCounter = new AtomicLong();

    // min stop time the min delta + 1 cache cycle timeout
    final long minExecutionTime = graphFig.getShardMinDelta() + graphFig.getShardCacheTimeout();

    logger.info(
        "Writing {} edges per worker on {} workers in {} injectors",
        workerWriteLimit,
        numWorkersPerInjector,
        numInjectors);

    final List<Future<Boolean>> futures = new ArrayList<>();

    for (Injector injector : injectors) {
      final GraphManagerFactory gmf = injector.getInstance(GraphManagerFactory.class);

      for (int i = 0; i < numWorkersPerInjector; i++) {
        Future<Boolean> future =
            executor.submit(
                new Worker(gmf, generator, workerWriteLimit, minExecutionTime, writeCounter));

        futures.add(future);
      }
    }

    /** Wait for all writes to complete */
    for (Future<Boolean> future : futures) {
      future.get();
    }

    // now get all our shards
    final NodeShardCache cache = getInstance(injectors, NodeShardCache.class);

    final DirectedEdgeMeta directedEdgeMeta = DirectedEdgeMeta.fromSourceNode(sourceId, edgeType);

    // now submit the readers.
    final GraphManagerFactory gmf = getInstance(injectors, GraphManagerFactory.class);

    final long writeCount = writeCounter.get();
    final Meter readMeter = registry.meter("readThroughput");

    final List<Throwable> failures = new ArrayList<>();

    for (int i = 0; i < 2; i++) {

      /** Start reading continuously while we migrate data to ensure our view is always correct */
      final ListenableFuture<Long> future =
          executor.submit(new ReadWorker(gmf, generator, writeCount, readMeter));

      // add the future
      Futures.addCallback(
          future,
          new FutureCallback<Long>() {

            @Override
            public void onSuccess(@Nullable final Long result) {
              logger.info("Successfully ran the read, re-running");
              executor.submit(new ReadWorker(gmf, generator, writeCount, readMeter));
            }

            @Override
            public void onFailure(final Throwable t) {
              failures.add(t);
              logger.error("Failed test!", t);
            }
          });
    }

    int compactedCount;

    // now start our readers

    while (true) {

      if (!failures.isEmpty()) {

        StringBuilder builder = new StringBuilder();

        builder.append("Read runner failed!\n");

        for (Throwable t : failures) {
          builder.append("Exception is: ");
          ByteArrayOutputStream output = new ByteArrayOutputStream();

          t.printStackTrace(new PrintWriter(output));

          builder.append(output.toString("UTF-8"));
          builder.append("\n\n");
        }

        fail(builder.toString());
      }

      // reset our count.  Ultimately we'll have 4 groups once our compaction completes
      compactedCount = 0;

      // we have to get it from the cache, because this will trigger the compaction process
      final Iterator<ShardEntryGroup> groups =
          cache.getReadShardGroup(scope, Long.MAX_VALUE, directedEdgeMeta);
      final Set<ShardEntryGroup> shardEntryGroups = new HashSet<>();

      while (groups.hasNext()) {

        final ShardEntryGroup group = groups.next();
        shardEntryGroups.add(group);

        logger.info(
            "Compaction pending status for group {} is {}", group, group.isCompactionPending());

        if (!group.isCompactionPending()) {
          compactedCount++;
        }
      }

      // we're done
      if (compactedCount >= expectedShardCount) {
        logger.info("All compactions complete, sleeping");

        //                final Object mutex = new Object();
        //
        //                synchronized ( mutex ){
        //
        //                    mutex.wait();
        //                }

        break;
      }

      Thread.sleep(2000);
    }

    // now continue reading everything for 30 seconds

    Thread.sleep(30000);

    executor.shutdownNow();
  }