Exemple #1
0
 /**
  * Assigns the specified byte values to elements of the specified range of the specified array of
  * bytes. The range to be filled extends from index fromIndex, inclusive, to index toIndex,
  * exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
  *
  * @param str the array to be filled
  * @param strFromIdx the index of the first element (inclusive) to be filled with the fill values
  * @param strToIdx the index of the last element (exclusive) to be filled with the fill values
  * @param fillArray the values to be stored in all elements of the array
  * @param fillFromIdx the index of the first element (inclusive) to be used as fill values
  * @param filToIdx the index of the last element (exclusive) to be used as fill value
  * @param invertFill if true inverts the bits in fill before filling the array
  */
 public static void fill(
     byte[] str,
     int strFromIdx,
     int strToIdx,
     byte[] fillArray,
     int fillFromIdx,
     int fillToIdx,
     boolean invertFill) {
   rangeCheck(str.length, strFromIdx, strToIdx);
   rangeCheck(fillArray.length, fillFromIdx, fillToIdx);
   int strIdx = strFromIdx;
   byte[] fill = fillArray;
   int fillLen = fillToIdx - fillFromIdx;
   if (invertFill) fill = SortOrder.invert(fillArray, fillFromIdx, fillLen);
   while (strIdx < strToIdx) {
     int fillIdx = fillFromIdx;
     while (fillIdx < fillToIdx && strIdx < strToIdx) {
       if (strIdx + fillLen < fillToIdx) {
         System.arraycopy(fill, fillFromIdx, str, strIdx, fillLen);
       } else {
         str[strIdx++] = fill[fillIdx++];
       }
     }
   }
 }
Exemple #2
0
 private static int getBytesInCharNoException(byte b, SortOrder sortOrder) {
   Preconditions.checkNotNull(sortOrder);
   if (sortOrder == SortOrder.DESC) {
     b = SortOrder.invert(b);
   }
   int c = b & 0xff;
   if ((c & BYTES_1_MASK) == 0) return 1;
   if ((c & BYTES_2_MASK) == 0xC0) return 2;
   if ((c & BYTES_3_MASK) == 0xE0) return 3;
   if ((c & BYTES_4_MASK) == 0xF0) return 4;
   return -1;
 }
Exemple #3
0
public class StringUtil {
  public static final String EMPTY_STRING = "";
  // Masks to determine how many bytes are in each character
  // From http://tools.ietf.org/html/rfc3629#section-3
  public static final byte SPACE_UTF8 = 0x20;
  private static final int BYTES_1_MASK = 0xFF << 7; // 0xxxxxxx is a single byte char
  private static final int BYTES_2_MASK = 0xFF << 5; // 110xxxxx is a double byte char
  private static final int BYTES_3_MASK = 0xFF << 4; // 1110xxxx is a triple byte char
  private static final int BYTES_4_MASK = 0xFF << 3; // 11110xxx is a quadruple byte char

  public static final byte INVERTED_SPACE_UTF8 =
      SortOrder.invert(new byte[] {SPACE_UTF8}, 0, new byte[1], 0, 1)[0];
  public static final char SINGLE_CHAR_WILDCARD = '?';
  public static final char SINGLE_CHAR_LIKE = '_';
  public static final char MULTI_CHAR_WILDCARD = '*';
  public static final char MULTI_CHAR_LIKE = '%';
  public static final String[] LIKE_ESCAPE_SEQS =
      new String[] {"\\" + SINGLE_CHAR_LIKE, "\\" + MULTI_CHAR_LIKE};
  public static final String[] LIKE_UNESCAPED_SEQS =
      new String[] {"" + SINGLE_CHAR_LIKE, "" + MULTI_CHAR_LIKE};

  private StringUtil() {}

  /** Replace instances of character ch in String value with String replacement */
  public static String replaceChar(String value, char ch, CharSequence replacement) {
    if (value == null) return null;
    int i = value.indexOf(ch);
    if (i == -1) return value; // nothing to do

    // we've got at least one character to replace
    StringBuilder buf = new StringBuilder(value.length() + 16); // some extra space
    int j = 0;
    while (i != -1) {
      buf.append(value, j, i).append(replacement);
      j = i + 1;
      i = value.indexOf(ch, j);
    }
    if (j < value.length()) buf.append(value, j, value.length());
    return buf.toString();
  }

  /**
   * @return the replacement of all occurrences of src[i] with target[i] in s. Src and target are
   *     not regex's so this uses simple searching with indexOf()
   */
  public static String replace(String s, String[] src, String[] target) {
    assert src != null && target != null && src.length > 0 && src.length == target.length;
    if (src.length == 1 && src[0].length() == 1) {
      return replaceChar(s, src[0].charAt(0), target[0]);
    }
    if (s == null) return null;
    StringBuilder sb = new StringBuilder(s.length());
    int pos = 0;
    int limit = s.length();
    int lastMatch = 0;
    while (pos < limit) {
      boolean matched = false;
      for (int i = 0; i < src.length; i++) {
        if (s.startsWith(src[i], pos) && src[i].length() > 0) {
          // we found a matching pattern - append the acculumation plus the replacement
          sb.append(s.substring(lastMatch, pos)).append(target[i]);
          pos += src[i].length();
          lastMatch = pos;
          matched = true;
          break;
        }
      }
      if (!matched) {
        // we didn't match any patterns, so move forward 1 character
        pos++;
      }
    }
    // see if we found any matches
    if (lastMatch == 0) {
      // we didn't match anything, so return the source string
      return s;
    }

    // apppend the trailing portion
    sb.append(s.substring(lastMatch));

    return sb.toString();
  }

  public static int getBytesInChar(byte b, SortOrder sortOrder) {
    int ret = getBytesInCharNoException(b, sortOrder);
    if (ret == -1) throw new UndecodableByteException(b);
    return ret;
  }

  private static int getBytesInCharNoException(byte b, SortOrder sortOrder) {
    Preconditions.checkNotNull(sortOrder);
    if (sortOrder == SortOrder.DESC) {
      b = SortOrder.invert(b);
    }
    int c = b & 0xff;
    if ((c & BYTES_1_MASK) == 0) return 1;
    if ((c & BYTES_2_MASK) == 0xC0) return 2;
    if ((c & BYTES_3_MASK) == 0xE0) return 3;
    if ((c & BYTES_4_MASK) == 0xF0) return 4;
    return -1;
  }

  public static int calculateUTF8Length(byte[] bytes, int offset, int length, SortOrder sortOrder) {
    int i = offset, endOffset = offset + length;
    length = 0;
    while (i < endOffset) {
      int charLength = getBytesInChar(bytes[i], sortOrder);
      i += charLength;
      length++;
    }
    return length;
  }

  // given an array of bytes containing utf-8 encoded strings, starting from curPos, ending before
  // range, and return the next character offset, -1 if no next character available or
  // UndecodableByteException
  private static int calculateNextCharOffset(
      byte[] bytes, int curPos, int range, SortOrder sortOrder) {
    int ret = getBytesInCharNoException(bytes[curPos], sortOrder);
    if (ret == -1) return -1;
    ret += curPos;
    if (ret >= range) return -1;
    return ret;
  }

  // given an array of bytes containing utf-8 encoded strings, starting from offset, and return
  // the previous character offset , -1 if UndecodableByteException. curPos points to current
  // character starting offset.
  private static int calculatePreCharOffset(
      byte[] bytes, int curPos, int offset, SortOrder sortOrder) {
    --curPos;
    for (int i = 1, pos = curPos - i + 1; i <= 4 && offset <= pos; ++i, --pos) {
      int ret = getBytesInCharNoException(bytes[pos], sortOrder);
      if (ret == i) return pos;
    }
    return -1;
  }

  // return actural offsetInBytes corresponding to offsetInStr in utf-8 encoded strings bytes
  // containing
  // @param bytes an array of bytes containing utf-8 encoded strings
  // @param offset
  // @param length
  // @param sortOrder
  // @param offsetInStr offset for utf-8 encoded strings bytes array containing. Can be negative
  // meaning counting from the end of encoded strings
  // @return actural offsetInBytes corresponding to offsetInStr. -1 if offsetInStr is out of index
  public static int calculateUTF8Offset(
      byte[] bytes, int offset, int length, SortOrder sortOrder, int offsetInStr) {
    if (offsetInStr == 0) return offset;
    int ret, range = offset + length;
    if (offsetInStr > 0) {
      ret = offset;
      while (offsetInStr > 0) {
        ret = calculateNextCharOffset(bytes, ret, range, sortOrder);
        if (ret == -1) return -1;
        --offsetInStr;
      }
    } else {
      ret = offset + length;
      while (offsetInStr < 0) {
        ret = calculatePreCharOffset(bytes, ret, offset, sortOrder);
        // if calculateCurCharOffset returns -1, ret must be smaller than offset
        if (ret < offset) return -1;
        ++offsetInStr;
      }
    }
    return ret;
  }

  // Given an array of bytes containing encoding utf-8 encoded strings, the offset and a length
  // parameter, return the actual index into the byte array which would represent a substring
  // of <length> starting from the character at <offset>. We assume the <offset> is the start
  // byte of an UTF-8 character.
  public static int getByteLengthForUtf8SubStr(
      byte[] bytes, int offset, int length, SortOrder sortOrder) {
    int byteLength = 0;
    while (length > 0 && offset + byteLength < bytes.length) {
      int charLength = getBytesInChar(bytes[offset + byteLength], sortOrder);
      byteLength += charLength;
      length--;
    }
    return byteLength;
  }

  public static boolean hasMultiByteChars(String s) {
    for (int i = 0; i < s.length(); i++) {
      char c = s.charAt(i);
      if (c > 0x007F) {
        return true;
      }
    }
    return false;
  }

  public static int getFirstNonBlankCharIdxFromStart(
      byte[] string, int offset, int length, SortOrder sortOrder) {
    int i = offset;
    byte space = sortOrder == SortOrder.ASC ? SPACE_UTF8 : INVERTED_SPACE_UTF8;
    for (; i < offset + length; i++) {
      if (string[i] != space) {
        break;
      }
    }
    return i;
  }

  public static int getFirstNonBlankCharIdxFromEnd(
      byte[] string, int offset, int length, SortOrder sortOrder) {
    int i = offset + length - 1;
    byte space = sortOrder == SortOrder.ASC ? SPACE_UTF8 : INVERTED_SPACE_UTF8;
    for (; i >= offset; i--) {
      if (string[i] != space) {
        break;
      }
    }
    return i;
  }

  // A toBytes function backed up HBase's utility function, but would accept null input, in which
  // case it returns an empty byte array.
  public static byte[] toBytes(String input) {
    if (input == null) {
      return ByteUtil.EMPTY_BYTE_ARRAY;
    }
    return Bytes.toBytes(input);
  }

  public static String escapeLike(String s) {
    return replace(s, LIKE_UNESCAPED_SEQS, LIKE_ESCAPE_SEQS);
  }

  public static int getUnpaddedCharLength(byte[] b, int offset, int length, SortOrder sortOrder) {
    return getFirstNonBlankCharIdxFromEnd(b, offset, length, sortOrder) - offset + 1;
  }

  public static byte[] padChar(byte[] value, int offset, int length, int paddedLength) {
    byte[] key = new byte[paddedLength];
    System.arraycopy(value, offset, key, 0, length);
    Arrays.fill(key, length, paddedLength, SPACE_UTF8);
    return key;
  }

  public static byte[] padChar(byte[] value, Integer byteSize) {
    byte[] newValue = Arrays.copyOf(value, byteSize);
    if (newValue.length > value.length) {
      Arrays.fill(newValue, value.length, newValue.length, SPACE_UTF8);
    }
    return newValue;
  }

  /**
   * Lame - StringBuilder.equals is retarded.
   *
   * @param b1
   * @param b2
   * @return whether or not the two builders consist the same sequence of characters
   */
  public static boolean equals(StringBuilder b1, StringBuilder b2) {
    if (b1.length() != b2.length()) {
      return false;
    }
    for (int i = 0; i < b1.length(); i++) {
      if (b1.charAt(i) != b2.charAt(i)) {
        return false;
      }
    }
    return true;
  }

  /**
   * LPAD implementation
   *
   * @param str array containing string to be left padded
   * @param strOffset byte offset of string
   * @param strLength byte length of string
   * @param fill array containing fill values
   * @param fillOffset byte offset of fill
   * @param fillLength byte length of fill
   * @param invertFill if true inverts the bits in fill before filling the array
   * @param strWithPaddingLen length of the string that is returned with fill values left padded
   * @return byte[] containing left padded string
   */
  public static byte[] lpad(
      byte[] str,
      int strOffset,
      int strLength,
      byte[] fill,
      int fillOffset,
      int fillLength,
      boolean invertFill,
      int strWithPaddingLen) {
    byte[] paddedStr = new byte[strWithPaddingLen];
    int fillStopIdx = strWithPaddingLen - strLength;
    // copy fill into the start of paddedStr
    fill(paddedStr, 0, fillStopIdx, fill, fillOffset, fillOffset + fillLength, invertFill);
    // fill remaining characters with original string
    System.arraycopy(str, strOffset, paddedStr, fillStopIdx, strLength);
    return paddedStr;
  }

  /**
   * Assigns the specified byte values to elements of the specified range of the specified array of
   * bytes. The range to be filled extends from index fromIndex, inclusive, to index toIndex,
   * exclusive. (If fromIndex==toIndex, the range to be filled is empty.)
   *
   * @param str the array to be filled
   * @param strFromIdx the index of the first element (inclusive) to be filled with the fill values
   * @param strToIdx the index of the last element (exclusive) to be filled with the fill values
   * @param fillArray the values to be stored in all elements of the array
   * @param fillFromIdx the index of the first element (inclusive) to be used as fill values
   * @param filToIdx the index of the last element (exclusive) to be used as fill value
   * @param invertFill if true inverts the bits in fill before filling the array
   */
  public static void fill(
      byte[] str,
      int strFromIdx,
      int strToIdx,
      byte[] fillArray,
      int fillFromIdx,
      int fillToIdx,
      boolean invertFill) {
    rangeCheck(str.length, strFromIdx, strToIdx);
    rangeCheck(fillArray.length, fillFromIdx, fillToIdx);
    int strIdx = strFromIdx;
    byte[] fill = fillArray;
    int fillLen = fillToIdx - fillFromIdx;
    if (invertFill) fill = SortOrder.invert(fillArray, fillFromIdx, fillLen);
    while (strIdx < strToIdx) {
      int fillIdx = fillFromIdx;
      while (fillIdx < fillToIdx && strIdx < strToIdx) {
        if (strIdx + fillLen < fillToIdx) {
          System.arraycopy(fill, fillFromIdx, str, strIdx, fillLen);
        } else {
          str[strIdx++] = fill[fillIdx++];
        }
      }
    }
  }

  /**
   * Checks that fromIndex and toIndex are in the range and throws an appropriate exception, if they
   * are not
   */
  private static void rangeCheck(int length, int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
      throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
      throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
      throw new ArrayIndexOutOfBoundsException(toIndex);
    }
  }

  public static String escapeStringConstant(String pattern) {
    return StringEscapeUtils.escapeSql(pattern); // Need to escape double quotes
  }

  public static String escapeBackslash(String input) {
    // see
    // http://stackoverflow.com/questions/4653831/regex-how-to-escape-backslashes-and-special-characters
    return input.replaceAll("\\\\", "\\\\\\\\");
  }
}
  @Override
  protected RegionScanner doPostScannerOpen(
      final ObserverContext<RegionCoprocessorEnvironment> c, final Scan scan, final RegionScanner s)
      throws IOException {
    byte[] isUngroupedAgg = scan.getAttribute(BaseScannerRegionObserver.UNGROUPED_AGG);
    if (isUngroupedAgg == null) {
      return s;
    }

    final ScanProjector p = ScanProjector.deserializeProjectorFromScan(scan);
    final HashJoinInfo j = HashJoinInfo.deserializeHashJoinFromScan(scan);
    RegionScanner theScanner = s;
    if (p != null || j != null) {
      theScanner =
          new HashJoinRegionScanner(s, p, j, ScanUtil.getTenantId(scan), c.getEnvironment());
    }
    final RegionScanner innerScanner = theScanner;

    byte[] indexUUID = scan.getAttribute(PhoenixIndexCodec.INDEX_UUID);
    PTable projectedTable = null;
    List<Expression> selectExpressions = null;
    byte[] upsertSelectTable = scan.getAttribute(BaseScannerRegionObserver.UPSERT_SELECT_TABLE);
    boolean isUpsert = false;
    boolean isDelete = false;
    byte[] deleteCQ = null;
    byte[] deleteCF = null;
    byte[][] values = null;
    byte[] emptyCF = null;
    ImmutableBytesWritable ptr = null;
    if (upsertSelectTable != null) {
      isUpsert = true;
      projectedTable = deserializeTable(upsertSelectTable);
      selectExpressions =
          deserializeExpressions(scan.getAttribute(BaseScannerRegionObserver.UPSERT_SELECT_EXPRS));
      values = new byte[projectedTable.getPKColumns().size()][];
      ptr = new ImmutableBytesWritable();
    } else {
      byte[] isDeleteAgg = scan.getAttribute(BaseScannerRegionObserver.DELETE_AGG);
      isDelete = isDeleteAgg != null && Bytes.compareTo(PDataType.TRUE_BYTES, isDeleteAgg) == 0;
      if (!isDelete) {
        deleteCF = scan.getAttribute(BaseScannerRegionObserver.DELETE_CF);
        deleteCQ = scan.getAttribute(BaseScannerRegionObserver.DELETE_CQ);
      }
      emptyCF = scan.getAttribute(BaseScannerRegionObserver.EMPTY_CF);
    }

    int batchSize = 0;
    long ts = scan.getTimeRange().getMax();
    HRegion region = c.getEnvironment().getRegion();
    List<Mutation> mutations = Collections.emptyList();
    if (isDelete || isUpsert || (deleteCQ != null && deleteCF != null) || emptyCF != null) {
      // TODO: size better
      mutations = Lists.newArrayListWithExpectedSize(1024);
      batchSize =
          c.getEnvironment()
              .getConfiguration()
              .getInt(MUTATE_BATCH_SIZE_ATTRIB, QueryServicesOptions.DEFAULT_MUTATE_BATCH_SIZE);
    }
    Aggregators aggregators =
        ServerAggregators.deserialize(
            scan.getAttribute(BaseScannerRegionObserver.AGGREGATORS),
            c.getEnvironment().getConfiguration());
    Aggregator[] rowAggregators = aggregators.getAggregators();
    boolean hasMore;
    boolean hasAny = false;
    MultiKeyValueTuple result = new MultiKeyValueTuple();
    if (logger.isInfoEnabled()) {
      logger.info("Starting ungrouped coprocessor scan " + scan);
    }
    long rowCount = 0;
    region.startRegionOperation();
    try {
      do {
        List<Cell> results = new ArrayList<Cell>();
        // Results are potentially returned even when the return value of s.next is false
        // since this is an indication of whether or not there are more values after the
        // ones returned
        hasMore = innerScanner.nextRaw(results);
        if (!results.isEmpty()) {
          rowCount++;
          result.setKeyValues(results);
          try {
            if (isDelete) {
              // FIXME: the version of the Delete constructor without the lock args was introduced
              // in 0.94.4, thus if we try to use it here we can no longer use the 0.94.2 version
              // of the client.
              Cell firstKV = results.get(0);
              Delete delete =
                  new Delete(
                      firstKV.getRowArray(), firstKV.getRowOffset(), firstKV.getRowLength(), ts);
              mutations.add(delete);
            } else if (isUpsert) {
              Arrays.fill(values, null);
              int i = 0;
              List<PColumn> projectedColumns = projectedTable.getColumns();
              for (; i < projectedTable.getPKColumns().size(); i++) {
                Expression expression = selectExpressions.get(i);
                if (expression.evaluate(result, ptr)) {
                  values[i] = ptr.copyBytes();
                  // If SortOrder from expression in SELECT doesn't match the
                  // column being projected into then invert the bits.
                  if (expression.getSortOrder() != projectedColumns.get(i).getSortOrder()) {
                    SortOrder.invert(values[i], 0, values[i], 0, values[i].length);
                  }
                }
              }
              projectedTable.newKey(ptr, values);
              PRow row = projectedTable.newRow(kvBuilder, ts, ptr);
              for (; i < projectedColumns.size(); i++) {
                Expression expression = selectExpressions.get(i);
                if (expression.evaluate(result, ptr)) {
                  PColumn column = projectedColumns.get(i);
                  Object value = expression.getDataType().toObject(ptr, column.getSortOrder());
                  // We are guaranteed that the two column will have the same type.
                  if (!column
                      .getDataType()
                      .isSizeCompatible(
                          ptr,
                          value,
                          column.getDataType(),
                          expression.getMaxLength(),
                          expression.getScale(),
                          column.getMaxLength(),
                          column.getScale())) {
                    throw new ValueTypeIncompatibleException(
                        column.getDataType(), column.getMaxLength(), column.getScale());
                  }
                  column
                      .getDataType()
                      .coerceBytes(
                          ptr,
                          value,
                          expression.getDataType(),
                          expression.getMaxLength(),
                          expression.getScale(),
                          expression.getSortOrder(),
                          column.getMaxLength(),
                          column.getScale(),
                          column.getSortOrder());
                  byte[] bytes = ByteUtil.copyKeyBytesIfNecessary(ptr);
                  row.setValue(column, bytes);
                }
              }
              for (Mutation mutation : row.toRowMutations()) {
                mutations.add(mutation);
              }
            } else if (deleteCF != null && deleteCQ != null) {
              // No need to search for delete column, since we project only it
              // if no empty key value is being set
              if (emptyCF == null || result.getValue(deleteCF, deleteCQ) != null) {
                Delete delete =
                    new Delete(
                        results.get(0).getRowArray(),
                        results.get(0).getRowOffset(),
                        results.get(0).getRowLength());
                delete.deleteColumns(deleteCF, deleteCQ, ts);
                mutations.add(delete);
              }
            }
            if (emptyCF != null) {
              /*
               * If we've specified an emptyCF, then we need to insert an empty
               * key value "retroactively" for any key value that is visible at
               * the timestamp that the DDL was issued. Key values that are not
               * visible at this timestamp will not ever be projected up to
               * scans past this timestamp, so don't need to be considered.
               * We insert one empty key value per row per timestamp.
               */
              Set<Long> timeStamps = Sets.newHashSetWithExpectedSize(results.size());
              for (Cell kv : results) {
                long kvts = kv.getTimestamp();
                if (!timeStamps.contains(kvts)) {
                  Put put = new Put(kv.getRowArray(), kv.getRowOffset(), kv.getRowLength());
                  put.add(
                      emptyCF, QueryConstants.EMPTY_COLUMN_BYTES, kvts, ByteUtil.EMPTY_BYTE_ARRAY);
                  mutations.add(put);
                }
              }
            }
            // Commit in batches based on UPSERT_BATCH_SIZE_ATTRIB in config
            if (!mutations.isEmpty() && batchSize > 0 && mutations.size() % batchSize == 0) {
              commitBatch(region, mutations, indexUUID);
              mutations.clear();
            }
          } catch (ConstraintViolationException e) {
            // Log and ignore in count
            logger.error(
                "Failed to create row in "
                    + region.getRegionNameAsString()
                    + " with values "
                    + SchemaUtil.toString(values),
                e);
            continue;
          }
          aggregators.aggregate(rowAggregators, result);
          hasAny = true;
        }
      } while (hasMore);
    } finally {
      innerScanner.close();
      region.closeRegionOperation();
    }

    if (logger.isInfoEnabled()) {
      logger.info("Finished scanning " + rowCount + " rows for ungrouped coprocessor scan " + scan);
    }

    if (!mutations.isEmpty()) {
      commitBatch(region, mutations, indexUUID);
    }

    final boolean hadAny = hasAny;
    KeyValue keyValue = null;
    if (hadAny) {
      byte[] value = aggregators.toBytes(rowAggregators);
      keyValue =
          KeyValueUtil.newKeyValue(
              UNGROUPED_AGG_ROW_KEY,
              SINGLE_COLUMN_FAMILY,
              SINGLE_COLUMN,
              AGG_TIMESTAMP,
              value,
              0,
              value.length);
    }
    final KeyValue aggKeyValue = keyValue;

    RegionScanner scanner =
        new BaseRegionScanner() {
          private boolean done = !hadAny;

          @Override
          public HRegionInfo getRegionInfo() {
            return innerScanner.getRegionInfo();
          }

          @Override
          public boolean isFilterDone() {
            return done;
          }

          @Override
          public void close() throws IOException {
            innerScanner.close();
          }

          @Override
          public boolean next(List<Cell> results) throws IOException {
            if (done) return false;
            done = true;
            results.add(aggKeyValue);
            return false;
          }

          @Override
          public long getMaxResultSize() {
            return scan.getMaxResultSize();
          }
        };
    return scanner;
  }