private BinaryDocValues loadBinary(FieldInfo field) throws IOException { BinaryEntry entry = binaries.get(field.name); data.seek(entry.offset); PagedBytes bytes = new PagedBytes(16); bytes.copy(data, entry.numBytes); final PagedBytes.Reader bytesReader = bytes.freeze(true); if (!merging) { binaryInfo.put(field.name, bytesReader); } if (entry.minLength == entry.maxLength) { final int fixedLength = entry.minLength; if (!merging) { ramBytesUsed.addAndGet(bytesReader.ramBytesUsed()); } return new BinaryDocValues() { @Override public BytesRef get(int docID) { final BytesRef term = new BytesRef(); bytesReader.fillSlice(term, fixedLength * (long) docID, fixedLength); return term; } }; } else { final MonotonicBlockPackedReader addresses = MonotonicBlockPackedReader.of( data, entry.packedIntsVersion, entry.blockSize, maxDoc, false); if (!merging) { addressInfo.put(field.name, addresses); ramBytesUsed.addAndGet(bytesReader.ramBytesUsed() + addresses.ramBytesUsed()); } return new BinaryDocValues() { @Override public BytesRef get(int docID) { long startAddress = docID == 0 ? 0 : addresses.get(docID - 1); long endAddress = addresses.get(docID); final BytesRef term = new BytesRef(); bytesReader.fillSlice(term, startAddress, (int) (endAddress - startAddress)); return term; } }; } }
/** Call this only once (if you subclass!) */ protected void uninvert(final LeafReader reader, Bits liveDocs, final BytesRef termPrefix) throws IOException { final FieldInfo info = reader.getFieldInfos().fieldInfo(field); if (checkForDocValues && info != null && info.getDocValuesType() != DocValuesType.NONE) { throw new IllegalStateException( "Type mismatch: " + field + " was indexed as " + info.getDocValuesType()); } // System.out.println("DTO uninvert field=" + field + " prefix=" + termPrefix); final long startTime = System.nanoTime(); prefix = termPrefix == null ? null : BytesRef.deepCopyOf(termPrefix); final int maxDoc = reader.maxDoc(); final int[] index = new int [maxDoc]; // immediate term numbers, or the index into the byte[] representing the last // number final int[] lastTerm = new int[maxDoc]; // last term we saw for this document final byte[][] bytes = new byte[maxDoc][]; // list of term numbers for the doc (delta encoded vInts) final Terms terms = reader.terms(field); if (terms == null) { // No terms return; } final TermsEnum te = terms.iterator(); final BytesRef seekStart = termPrefix != null ? termPrefix : new BytesRef(); // System.out.println("seekStart=" + seekStart.utf8ToString()); if (te.seekCeil(seekStart) == TermsEnum.SeekStatus.END) { // No terms match return; } // For our "term index wrapper" final List<BytesRef> indexedTerms = new ArrayList<>(); final PagedBytes indexedTermsBytes = new PagedBytes(15); // we need a minimum of 9 bytes, but round up to 12 since the space would // be wasted with most allocators anyway. byte[] tempArr = new byte[12]; // // enumerate all terms, and build an intermediate form of the un-inverted field. // // During this intermediate form, every document has a (potential) byte[] // and the int[maxDoc()] array either contains the termNumber list directly // or the *end* offset of the termNumber list in its byte array (for faster // appending and faster creation of the final form). // // idea... if things are too large while building, we could do a range of docs // at a time (but it would be a fair amount slower to build) // could also do ranges in parallel to take advantage of multiple CPUs // OPTIONAL: remap the largest df terms to the lowest 128 (single byte) // values. This requires going over the field first to find the most // frequent terms ahead of time. int termNum = 0; postingsEnum = null; // Loop begins with te positioned to first term (we call // seek above): for (; ; ) { final BytesRef t = te.term(); if (t == null || (termPrefix != null && !StringHelper.startsWith(t, termPrefix))) { break; } // System.out.println("visit term=" + t.utf8ToString() + " " + t + " termNum=" + termNum); visitTerm(te, termNum); if ((termNum & indexIntervalMask) == 0) { // Index this term sizeOfIndexedStrings += t.length; BytesRef indexedTerm = new BytesRef(); indexedTermsBytes.copy(t, indexedTerm); // TODO: really should 1) strip off useless suffix, // and 2) use FST not array/PagedBytes indexedTerms.add(indexedTerm); } final int df = te.docFreq(); if (df <= maxTermDocFreq) { postingsEnum = te.postings(postingsEnum, PostingsEnum.NONE); // dF, but takes deletions into account int actualDF = 0; for (; ; ) { int doc = postingsEnum.nextDoc(); if (doc == DocIdSetIterator.NO_MORE_DOCS) { break; } // System.out.println(" chunk=" + chunk + " docs"); actualDF++; termInstances++; // System.out.println(" docID=" + doc); // add TNUM_OFFSET to the term number to make room for special reserved values: // 0 (end term) and 1 (index into byte array follows) int delta = termNum - lastTerm[doc] + TNUM_OFFSET; lastTerm[doc] = termNum; int val = index[doc]; if ((val & 0xff) == 1) { // index into byte array (actually the end of // the doc-specific byte[] when building) int pos = val >>> 8; int ilen = vIntSize(delta); byte[] arr = bytes[doc]; int newend = pos + ilen; if (newend > arr.length) { // We avoid a doubling strategy to lower memory usage. // this faceting method isn't for docs with many terms. // In hotspot, objects have 2 words of overhead, then fields, rounded up to a 64-bit // boundary. // TODO: figure out what array lengths we can round up to w/o actually using more // memory // (how much space does a byte[] take up? Is data preceded by a 32 bit length only? // It should be safe to round up to the nearest 32 bits in any case. int newLen = (newend + 3) & 0xfffffffc; // 4 byte alignment byte[] newarr = new byte[newLen]; System.arraycopy(arr, 0, newarr, 0, pos); arr = newarr; bytes[doc] = newarr; } pos = writeInt(delta, arr, pos); index[doc] = (pos << 8) | 1; // update pointer to end index in byte[] } else { // OK, this int has data in it... find the end (a zero starting byte - not // part of another number, hence not following a byte with the high bit set). int ipos; if (val == 0) { ipos = 0; } else if ((val & 0x0000ff80) == 0) { ipos = 1; } else if ((val & 0x00ff8000) == 0) { ipos = 2; } else if ((val & 0xff800000) == 0) { ipos = 3; } else { ipos = 4; } // System.out.println(" ipos=" + ipos); int endPos = writeInt(delta, tempArr, ipos); // System.out.println(" endpos=" + endPos); if (endPos <= 4) { // System.out.println(" fits!"); // value will fit in the integer... move bytes back for (int j = ipos; j < endPos; j++) { val |= (tempArr[j] & 0xff) << (j << 3); } index[doc] = val; } else { // value won't fit... move integer into byte[] for (int j = 0; j < ipos; j++) { tempArr[j] = (byte) val; val >>>= 8; } // point at the end index in the byte[] index[doc] = (endPos << 8) | 1; bytes[doc] = tempArr; tempArr = new byte[12]; } } } setActualDocFreq(termNum, actualDF); } termNum++; if (te.next() == null) { break; } } numTermsInField = termNum; long midPoint = System.nanoTime(); if (termInstances == 0) { // we didn't invert anything // lower memory consumption. tnums = null; } else { this.index = index; // // transform intermediate form into the final form, building a single byte[] // at a time, and releasing the intermediate byte[]s as we go to avoid // increasing the memory footprint. // for (int pass = 0; pass < 256; pass++) { byte[] target = tnums[pass]; int pos = 0; // end in target; if (target != null) { pos = target.length; } else { target = new byte[4096]; } // loop over documents, 0x00ppxxxx, 0x01ppxxxx, 0x02ppxxxx // where pp is the pass (which array we are building), and xx is all values. // each pass shares the same byte[] for termNumber lists. for (int docbase = pass << 16; docbase < maxDoc; docbase += (1 << 24)) { int lim = Math.min(docbase + (1 << 16), maxDoc); for (int doc = docbase; doc < lim; doc++) { // System.out.println(" pass="******" process docID=" + doc); int val = index[doc]; if ((val & 0xff) == 1) { int len = val >>> 8; // System.out.println(" ptr pos=" + pos); index[doc] = (pos << 8) | 1; // change index to point to start of array if ((pos & 0xff000000) != 0) { // we only have 24 bits for the array index throw new IllegalStateException( "Too many values for UnInvertedField faceting on field " + field); } byte[] arr = bytes[doc]; /* for(byte b : arr) { //System.out.println(" b=" + Integer.toHexString((int) b)); } */ bytes[doc] = null; // IMPORTANT: allow GC to avoid OOM if (target.length <= pos + len) { int newlen = target.length; /** * * we don't have to worry about the array getting too large since the "pos" param * will overflow first (only 24 bits available) if ((newlen<<1) <= 0) { // * overflow... newlen = Integer.MAX_VALUE; if (newlen <= pos + len) { throw new * SolrException(400,"Too many terms to uninvert field!"); } } else { while (newlen * <= pos + len) newlen<<=1; // doubling strategy } ** */ while (newlen <= pos + len) newlen <<= 1; // doubling strategy byte[] newtarget = new byte[newlen]; System.arraycopy(target, 0, newtarget, 0, pos); target = newtarget; } System.arraycopy(arr, 0, target, pos, len); pos += len + 1; // skip single byte at end and leave it 0 for terminator } } } // shrink array if (pos < target.length) { byte[] newtarget = new byte[pos]; System.arraycopy(target, 0, newtarget, 0, pos); target = newtarget; } tnums[pass] = target; if ((pass << 16) > maxDoc) break; } } indexedTermsArray = indexedTerms.toArray(new BytesRef[indexedTerms.size()]); long endTime = System.nanoTime(); total_time = (int) TimeUnit.MILLISECONDS.convert(endTime - startTime, TimeUnit.NANOSECONDS); phase1_time = (int) TimeUnit.MILLISECONDS.convert(midPoint - startTime, TimeUnit.NANOSECONDS); }