public void compairWise( ArrayList<Double> aList, ArrayList<Double> bList, String aGroup, String bGroup) { // a should be the small // b should be the larger ArrayList<Integer> randomNumberList = new ArrayList<Integer>(); double a[] = new double[aList.size()]; double b[] = new double[aList.size()]; for (int i = 0; i < aList.size(); ) { a[i] = aList.get(i); while (true) { int randomIndex = r.nextInt(bList.size()); if (!randomNumberList.contains(randomIndex)) { randomNumberList.add(randomIndex); b[i] = bList.get(randomIndex); break; } } i++; } randomNumberList.clear(); /*for(int i = 0; i<aList.size();){ System.out.println("a"+a[i]+"b"+b[i]); }*/ int df = aList.size() + aList.size() - 2; TTest ttest = new TTest(); System.out.println("-----------------------------"); System.out.println(bGroup + " Vs " + aGroup); System.out.println(aGroup + " Mean:" + getMean(a)); System.out.println(aGroup + " Standard Deviation:" + getStdDev(a)); System.out.println(bGroup + " Mean:" + getMean(b)); System.out.println(bGroup + " Standard Deviation:" + getStdDev(b)); System.out.println("t_statistic:" + ttest.t(a, b)); System.out.println("p value:" + ttest.tTest(a, b)); System.out.println("DF:" + df); double corr = new PearsonsCorrelation().correlation(a, b); System.out.println("Correlation: " + corr); System.out.println("\n\n"); }
public void compare() { compairWise(toplevelList.get("Asian"), toplevelList.get("White"), "Asian", "White"); compairWise( toplevelList.get("AfricanAmerican"), toplevelList.get("White"), "AfricanAmerican", "White"); compairWise(toplevelList.get("Hispanic"), toplevelList.get("White"), "Hispanic", "White"); compairWise(list.get("AsianM"), list.get("WhiteM"), "Asian Male", "White Male"); compairWise(list.get("AsianF"), list.get("WhiteF"), "Asian Female", "White Female"); compairWise( list.get("AfricanAmericanM"), list.get("WhiteM"), "AfricanAmerican Male", "White Male"); compairWise( list.get("AfricanAmericanF"), list.get("WhiteF"), "AfricanAmerican Female", "White Female"); compairWise(list.get("HispanicM"), list.get("WhiteM"), "Hispanic Male", "White Male"); compairWise(list.get("HispanicF"), list.get("WhiteF"), "Hispanic Female", "White Female"); white = new double[nonWhiteSize]; nonWhite = new double[nonWhiteSize]; ArrayList<Integer> randomNumberList = new ArrayList<Integer>(); for (int i = 0; i < nonWhiteSize; ) { while (true) { int randomIndex = r.nextInt(whiteSize); if (!randomNumberList.contains(randomIndex)) { randomNumberList.add(randomIndex); white[i] = toplevelList.get("White").get(randomIndex); break; } } i++; } /*for(int i = 0; i<nonWhiteSize;){ System.out.println("Random Number:"+randomNumberList.get(i)+", white["+i+"]: "+ white[i]); i++; }*/ for (int i = 0; i < toplevelList.get("AfricanAmerican").size(); i++) { nonWhite[i] = toplevelList.get("AfricanAmerican").get(i); } int j = 0; for (int i = toplevelList.get("AfricanAmerican").size(); i < toplevelList.get("AfricanAmerican").size() + toplevelList.get("Asian").size(); i++) { nonWhite[i] = toplevelList.get("Asian").get(j); j++; } j = 0; for (int i = toplevelList.get("AfricanAmerican").size() + toplevelList.get("Asian").size(); i < nonWhiteSize; i++) { nonWhite[i] = toplevelList.get("Hispanic").get(j); j++; } int df = (int) (nonWhiteSize + nonWhiteSize - 2); TTest ttest = new TTest(); System.out.println("-----------------------------"); System.out.println("White Vs Non-White"); System.out.println("White Mean:" + getMean(white)); System.out.println("White Standard Deviation:" + getStdDev(white)); System.out.println("Non-White Mean:" + getMean(nonWhite)); System.out.println("Non-White Standard Deviation:" + getStdDev(nonWhite)); System.out.println("t_statistic:" + ttest.t(white, nonWhite)); System.out.println("p value:" + ttest.tTest(white, nonWhite)); System.out.println("DF:" + df); double corr = new PearsonsCorrelation().correlation(white, nonWhite); System.out.println("Correlation: " + corr); }