Exemple #1
0
 @SneakyThrows
 public static void main(String[] args) {
   val opts = new Opts();
   val cmdLineParser = new CmdLineParser(opts);
   try {
     cmdLineParser.parseArgument(args);
   } catch (CmdLineException e) {
     cmdLineParser.printUsage(System.err);
     System.exit(2);
   }
   trainAndSaveModel(opts);
 }
Exemple #2
0
  @SneakyThrows
  public static void trainAndSaveModel(Opts opts) {
    // Load labeled data
    List<String> templateLines = linesFromPath(opts.templateFile).collect(toList());
    val predExtractor = ConllFormat.predicatesFromTemplate(templateLines.stream());
    List<List<Pair<ConllFormat.Row, String>>> labeledData =
        ConllFormat.readData(linesFromPath(opts.trainPath), true)
            .stream()
            .map(x -> x.stream().map(y -> y.asLabeledPair().swap()).collect(Collectors.toList()))
            .collect(Collectors.toList());

    // Split train/test data
    logger.info(
        "CRF training with {} threads and {} labeled examples",
        opts.numThreads,
        labeledData.size());
    val trainTestPair = splitData(labeledData, opts.testSplitRatio);
    List<List<Pair<ConllFormat.Row, String>>> trainLabeledData = trainTestPair.getOne();
    List<List<Pair<ConllFormat.Row, String>>> testLabeledData = trainTestPair.getTwo();

    // Set up Train options
    CRFTrainer.Opts trainOpts = new CRFTrainer.Opts();
    trainOpts.sigmaSq = opts.sigmaSquared;
    trainOpts.lbfgsHistorySize = opts.lbfgsHistorySize;
    trainOpts.minExpectedFeatureCount = (int) (1.0 / opts.featureKeepProb);
    trainOpts.numThreads = opts.numThreads;

    // Trainer
    CRFTrainer<String, ConllFormat.Row, String> trainer =
        new CRFTrainer<>(trainLabeledData, predExtractor, trainOpts);

    // Setup iteration callback, weird trick here where you require
    // the trainer to make a model for each iteration but then need
    // to modify the iteration-callback to use it
    Parallel.MROpts evalMrOpts =
        Parallel.MROpts.withIdAndThreads("mr-crf-train-eval", opts.numThreads);
    trainOpts.optimizerOpts.iterCallback =
        (weights) -> {
          CRFModel<String, ConllFormat.Row, String> crfModel = trainer.modelForWeights(weights);
          long start = System.currentTimeMillis();
          List<List<Pair<String, ConllFormat.Row>>> trainEvalData =
              trainLabeledData
                  .stream()
                  .map(x -> x.stream().map(Pair::swap).collect(toList()))
                  .collect(toList());

          Evaluation<String> eval = Evaluation.compute(crfModel, trainEvalData, evalMrOpts);
          long stop = System.currentTimeMillis();
          logger.info(
              "Train Accuracy: {} (took {} ms)", eval.tokenAccuracy.accuracy(), stop - start);
          if (!testLabeledData.isEmpty()) {
            start = System.currentTimeMillis();
            List<List<Pair<String, ConllFormat.Row>>> testEvalData =
                testLabeledData
                    .stream()
                    .map(x -> x.stream().map(Pair::swap).collect(toList()))
                    .collect(toList());
            eval = Evaluation.compute(crfModel, testEvalData, evalMrOpts);
            stop = System.currentTimeMillis();
            logger.info(
                "Test Accuracy: {} (took {} ms)", eval.tokenAccuracy.accuracy(), stop - start);
          }
        };

    CRFModel<String, ConllFormat.Row, String> crfModel = trainer.train(trainLabeledData);
    Parallel.shutdownExecutor(evalMrOpts.executorService, Long.MAX_VALUE);
    Vector weights = crfModel.weights();
    val dos = new DataOutputStream(new FileOutputStream(opts.modelPath));
    logger.info("Writing model to {}", opts.modelPath);
    ConllFormat.saveModel(dos, templateLines, crfModel.featureEncoder, weights);
  }