Exemple #1
0
 /**
  * Computes an alpha trimmed mean upon the current region of the current function. Note that this
  * method uses memory to make a copy of the input values. Larger input regions might require a lot
  * of memory.
  *
  * @param alpha A number between 0 and 0.5 specifying the proportion of samples to ignore on each
  *     end.
  * @return The measured value
  */
 public double alphaTrimmedMean(double alpha) {
   if ((alpha < 0) || (alpha >= 0.5))
     throw new IllegalArgumentException("alpha value must be >= 0 and < 0.5");
   T tmp = func.createOutput();
   values.clear();
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     values.add(tmp.getRealDouble());
   }
   values.sortValues();
   double tailSize = alpha * values.size();
   // can we avoid interpolation?
   if (tailSize == Math.floor(tailSize)) {
     // yes, trim count is exactly an integer
     return calcTrimmedMean(values, (int) tailSize);
   }
   // no, trim count is a float value
   // calc two trimmed means and interpolate to find the value between them
   double mean1 = calcTrimmedMean(values, (int) Math.floor(tailSize));
   double mean2 = calcTrimmedMean(values, (int) Math.ceil(tailSize));
   double fraction = tailSize - Math.floor(tailSize);
   double interpolation = ((1 - fraction) * mean1) + (fraction * mean2);
   return interpolation;
 }
Exemple #2
0
 /**
  * Computes the product of all the values of the current region of the current function.
  *
  * @return The measured value
  */
 public double product() {
   T tmp = func.createOutput();
   double prod = 1;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     prod *= value;
   }
   return prod;
 }
Exemple #3
0
 /**
  * Computes a trimmed mean upon the current region of the current function. Note that this method
  * uses memory to make a copy of the input values. Larger input regions might require a lot of
  * memory.
  *
  * @param halfTrimSize The number of samples to ignore from each end of the data
  * @return The measured value
  */
 public double trimmedMean(int halfTrimSize) {
   T tmp = func.createOutput();
   values.clear();
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     values.add(tmp.getRealDouble());
   }
   values.sortValues();
   return calcTrimmedMean(values, halfTrimSize);
 }
Exemple #4
0
 /**
  * Computes the maximum value upon the current region of the current function.
  *
  * @return The measured value
  */
 public double max() {
   T tmp = func.createOutput();
   double max = Double.NEGATIVE_INFINITY;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     max = Math.max(max, value);
   }
   return max;
 }
Exemple #5
0
 /**
  * Computes the sum of all the values of the current region of the current function.
  *
  * @return The measured value
  */
 public double sum() {
   T tmp = func.createOutput();
   double sum = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     sum += value;
   }
   return sum;
 }
Exemple #6
0
 /**
  * Computes the minimum value upon the current region of the current function.
  *
  * @return The measured value
  */
 public double min() {
   T tmp = func.createOutput();
   double min = Double.POSITIVE_INFINITY;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     min = Math.min(min, value);
   }
   return min;
 }
Exemple #7
0
 /**
  * Computes the arithmetic mean (or average) upon the current region of the current function.
  *
  * @return The measured value
  */
 public double arithmeticMean() {
   T tmp = func.createOutput();
   double sum = 0;
   long numElements = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     sum += tmp.getRealDouble();
     numElements++;
   }
   return sum / numElements;
 }
Exemple #8
0
 /**
  * Computes the sum of squared deviations of the values of the current region of the current
  * function.
  *
  * @return The measured value
  */
 public double sumOfSquaredDeviations() {
   T tmp = func.createOutput();
   final double xbar = arithmeticMean();
   double sum = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     double term = value - xbar;
     sum += (term * term);
   }
   return sum;
 }
Exemple #9
0
 /**
  * Computes the harmonic mean upon the current region of the current function.
  *
  * @return The measured value
  */
 public double harmonicMean() {
   T tmp = func.createOutput();
   double sum = 0;
   long numElements = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     sum += 1 / value;
     numElements++;
   }
   return numElements / sum; // looks weird but it is correct
 }
Exemple #10
0
 /**
  * Computes the contraharmonic mean upon the current region of the current function.
  *
  * @return The measured value
  */
 public double contraharmonicMean(double order) {
   T tmp = func.createOutput();
   double sum1 = 0;
   double sum2 = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     sum1 += Math.pow(value, order + 1);
     sum2 += Math.pow(value, order);
   }
   return sum1 / sum2;
 }
Exemple #11
0
 /**
  * Computes the centroid point of the current region and returns it as a pair of Doubles. The
  * first element in the pair is the x component and the second element is the y component.
  *
  * @return The measured point stored in a Tuple2
  */
 public Tuple2<Double, Double> centroidXY() {
   double sumX = 0;
   double sumY = 0;
   long numElements = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     sumX += pos[0];
     sumY += pos[1];
     numElements++;
   }
   double cx = (sumX / numElements) + 0.5;
   double cy = (sumY / numElements) + 0.5;
   return new Tuple2<Double, Double>(cx, cy);
 }
Exemple #12
0
 /**
  * Computes a weighted sum of the current function values over the current region. The weights are
  * provided and there must be as many weights as there are points in the current region.
  *
  * @return The measured value
  */
 public double weightedSum(double[] weights) {
   long numElements = region.size();
   if (numElements != weights.length)
     throw new IllegalArgumentException("number of weights does not equal number of samples");
   T tmp = func.createOutput();
   double sum = 0;
   int i = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     sum += weights[i++] * value;
   }
   return sum;
 }
Exemple #13
0
 /**
  * Computes the center of mass point of the current region of the current function. Returns it as
  * a pair of Doubles. The first element in the pair is the x component and the second element is
  * the y component.
  *
  * @return The measured point stored in a Tuple2
  */
 public Tuple2<Double, Double> centerOfMassXY() {
   T tmp = func.createOutput();
   double sumV = 0;
   double sumX = 0;
   double sumY = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double v = tmp.getRealDouble();
     sumV += v;
     sumX += v * pos[0];
     sumY += v * pos[1];
   }
   double cx = (sumX / sumV) + 0.5;
   double cy = (sumY / sumV) + 0.5;
   return new Tuple2<Double, Double>(cx, cy);
 }
 @Override
 public void run() {
   if (!threshSrv.hasThreshold(input)) {
     cancel("This command requires a thresholded image.");
     return;
   }
   ThresholdOverlay thresh = threshSrv.getThreshold(input);
   PointSetIterator iter = thresh.getPointsWithin().iterator();
   if (!iter.hasNext()) {
     cancel("No pixels are within the threshold");
     return;
   }
   Dataset ds = dispSrv.getActiveDataset(input);
   final int numDims = ds.numDimensions();
   final long[] dimensions = new long[numDims];
   final long[] min = new long[numDims];
   /*
    * First pass - find minima and maxima so we can use a shrunken image in some cases.
    */
   for (int i = 0; i < numDims; i++) {
     min[i] = (long) Math.floor(thresh.realMin(i));
     dimensions[i] = (long) Math.floor(thresh.realMax(i) - thresh.realMin(i) + 1);
   }
   final ArrayImg<BitType, BitArray> arrayMask =
       new ArrayImgFactory<BitType>().createBitInstance(dimensions, 1);
   final BitType t = new BitType(arrayMask);
   arrayMask.setLinkedType(t);
   final Img<BitType> mask =
       new ImgTranslationAdapter<BitType, ArrayImg<BitType, BitArray>>(arrayMask, min);
   final RandomAccess<BitType> raMask = mask.randomAccess();
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     raMask.setPosition(pos);
     raMask.get().set(true);
   }
   output =
       new BinaryMaskOverlay(context, new BinaryMaskRegionOfInterest<BitType, Img<BitType>>(mask));
   output.setAlpha(alpha);
   output.setFillColor(color);
   for (int i = 0; i < numDims; i++) {
     output.setAxis(ds.getImgPlus().axis(i), i);
   }
 }
Exemple #15
0
 /**
  * Resets the StatCalculator to work with a new function and/or region. The calculator does the
  * minimum amount of reinitialization.
  *
  * @param newFunc The new {@link Function} to use for obtaining sample values
  * @param newRegion The new {@link PointSet} region over which to gather samples
  */
 public void reset(Function<long[], T> newFunc, PointSet newRegion) {
   func = newFunc;
   if (newRegion == region) {
     iter.reset();
   } else {
     region = newRegion;
     iter = region.iterator();
   }
   values.clear();
 }
Exemple #16
0
 /**
  * Computes the (biased) kurtosis value upon the current region of the current function.
  *
  * @return The measured value
  */
 public double populationKurtosis() {
   T tmp = func.createOutput();
   double xbar = arithmeticMean();
   double s2 = 0;
   double s4 = 0;
   long numElements = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     numElements++;
     double v = value - xbar;
     double v2 = v * v;
     double v4 = v2 * v2;
     s2 += v2;
     s4 += v4;
   }
   double n = numElements;
   double m2 = s2 / n;
   double m4 = s4 / n;
   return m4 / (m2 * m2);
 }
Exemple #17
0
  /**
   * Computes the median upon the current region of the current function. Note that this method uses
   * memory to make a copy of the input values. Larger input regions might require a lot of memory.
   *
   * @return The measured value
   */
  public double median() {
    T tmp = func.createOutput();
    values.clear();
    iter.reset();
    while (iter.hasNext()) {
      long[] pos = iter.next();
      func.compute(pos, tmp);
      values.add(tmp.getRealDouble());
    }
    final int numElements = values.size();
    if (numElements <= 0)
      throw new IllegalArgumentException("number of samples must be greater than 0");

    values.sortValues();

    // odd number of elements
    if ((numElements % 2) == 1) return values.get(numElements / 2);

    // else an even number of elements
    double value1 = values.get((numElements / 2) - 1);
    double value2 = values.get((numElements / 2));
    return (value1 + value2) / 2;
  }
Exemple #18
0
 /**
  * Computes the (biased) skew value upon the current region of the current function.
  *
  * @return The measured value
  */
 public double populationSkew() {
   T tmp = func.createOutput();
   double xbar = arithmeticMean();
   double s2 = 0;
   double s3 = 0;
   long numElements = 0;
   iter.reset();
   while (iter.hasNext()) {
     long[] pos = iter.next();
     func.compute(pos, tmp);
     double value = tmp.getRealDouble();
     numElements++;
     double v = value - xbar;
     double v2 = v * v;
     double v3 = v2 * v;
     s2 += v2;
     s3 += v3;
   }
   double n = numElements;
   double m2 = s2 / n;
   double m3 = s3 / n;
   return m3 / Math.pow(m2, 1.5);
 }