Exemple #1
0
 public static double RBFKernel(Vector w, Vector x, double c) {
   double sum = 0;
   for (int i = 0; i < x.getDimension(); i++) {
     sum += Math.pow(w.get(i) - x.get(i), 2);
   }
   return Math.exp(-sum / c);
 }
Exemple #2
0
  /**
   * Trains the classifier for Multiclass SVM, by using a label for One-vs-All training.
   *
   * @param examples - The examples to train on
   * @param rate0 - the learning rate
   * @param C - The C term
   * @param epochT - The number of epochs
   * @param label - The label to train for
   * @return - Weight vector for the classifier.
   */
  public static Vector SGD(
      ArrayList<Vector> examples, double rate0, double C, int epochT, String label) {
    double rate;
    int t = 0;
    Vector w = new Vector(examples.get(0).getDimension());

    for (int epoch = 0; epoch < epochT; epoch++) {
      examples = Util.shuffle(examples);
      for (int i = 0; i < examples.size(); i++) {
        Vector x = examples.get(i);
        rate = rate0 / (1 + (rate0 * t) / C);
        Vector E = w;
        if (x.getLabel(label) * LinearKernel(w, x, 1) <= 1)
          E = w.add(x.scale(-1 * C * x.getLabel(label)));
        w = w.add(E.scale(-1 * rate));
        t++;
      }
    }
    return w;
  }
Exemple #3
0
 public static double LinearKernel(Vector w, Vector x, int power) {
   return Math.pow(w.transpose(x), power);
 }