public void predictAsLink( Graph graph, Iterable<Edge> unknownedges, boolean removenotexist, String existfeature) { // Add co-reference edge schema and feature, but do nothing else // Add schema, if not already defined if (!graph.hasSchema(this.edgeschemaid)) { graph.addSchema(this.edgeschemaid, new Schema(SchemaType.UNDIRECTED)); } // Add existence feature, if not already defined Schema schema = graph.getSchema(this.edgeschemaid); if (!schema.hasFeature(existfeature)) { schema.addFeature(existfeature, LinkPredictor.EXISTENCEFEATURE); graph.updateSchema(this.edgeschemaid, schema); } }
public void predictAsLink(Graph graph, PotentialLinkGenerator generator) { // Add co-reference edge schema, but do nothing else if (!graph.hasSchema(this.edgeschemaid)) { graph.addSchema(this.edgeschemaid, new Schema(SchemaType.UNDIRECTED)); } }
@Override public void addNoise(Graph g) { if (initialize) { this.initialize(); } Schema schema = g.getSchema(schemaid); // Load feature ids, if needed if (fids == null) { fids = FeatureUtils.parseFeatureList( this, schema, IteratorUtils.iterator2stringlist(schema.getFeatureIDs())); } for (String fid : fids) { Feature f = schema.getFeature(fid); // Flip attributes if (f instanceof ExplicitCateg) { // Handle explicit categorical features UnmodifiableList<String> cats = ((ExplicitCateg) f).getAllCategories(); int catsize = cats.size(); // Iterate over graph all graph items with the given schema Iterator<GraphItem> gitr = g.getGraphItems(schemaid); while (gitr.hasNext()) { GraphItem gi = gitr.next(); String oldvalue = gi.getFeatureValue(fid).getStringValue(); if (sparsevalue != null && !oldvalue.equals(sparsevalue)) { // Only flip the non-sparse values // Done so for sparse sets, the common value doesn't become // too common. continue; } // Only flip given some probability if (rand.nextDouble() > probflip) { continue; } // Randomly select a category int index = rand.nextInt(catsize); if (changevalue && catsize > 1) { while (oldvalue.equals(cats.get(index))) { index = rand.nextInt(catsize); } } gi.setFeatureValue(fid, new CategValue(cats.get(index))); } } else if (f instanceof ExplicitNum) { // Iterate over graph all graph items with the given schema Iterator<GraphItem> gitr = g.getGraphItems(schemaid); while (gitr.hasNext()) { GraphItem gi = gitr.next(); double oldvalue = ((NumValue) gi.getFeatureValue(fid)).getNumber(); if (oldvalue != 0.0 && oldvalue != 1.0) { throw new UnsupportedTypeException( "Numeric values must be either 0 or 1: " + gi + "." + fid + "=" + oldvalue); } if (sparsevalue != null && oldvalue != Double.parseDouble(sparsevalue)) { // Only flip the non-sparse values // Done so for sparse sets, the common value doesn't become // too common. continue; } // Only flip given some probability if (rand.nextDouble() > probflip) { continue; } double value = 0; if (changevalue && oldvalue == value) { value = (oldvalue + 1) % 2; } else { // Randomly select a category value = rand.nextInt(2); } gi.setFeatureValue(fid, new NumValue(value)); } } else { throw new UnsupportedTypeException("Unsupported Type: " + f.getClass().getCanonicalName()); } } }