Exemple #1
0
 static void checkDataset() {
   Attribute[] outputs = Attributes.getOutputAttributes();
   if (outputs.length != 1) {
     LogManager.printErr("Only datasets with one output are supported");
     System.exit(1);
   }
   if (outputs[0].getType() != Attribute.NOMINAL) {
     LogManager.printErr("Output attribute should be nominal");
     System.exit(1);
   }
   Parameters.numClasses = outputs[0].getNumNominalValues();
   Parameters.numAttributes = Attributes.getInputAttributes().length;
 }
Exemple #2
0
  /** Muestra por pantalla la regla actual */
  public void mostrarRegla() {

    Attribute a[] = Attributes.getInputAttributes();
    Attribute s[] = Attributes.getOutputAttributes();

    System.out.print("Regla: ");
    for (int i = 0; i < this.antecedentes.size(); i++) {

      Atributo_valor av = antecedentes.get(i);

      System.out.print(
          "("
              + a[av.getAtributo()].getName()
              + ","
              + a[av.getAtributo()].getNominalValue(av.getValor().intValue())
              + ")");
      if (i < this.antecedentes.size() - 1) System.out.print(" & ");
    }
    System.out.println(" -> (" + s[0].getName() + "," + this.consecuente + ")");
    System.out.println("------------------------------------");
  }
Exemple #3
0
  /**
   * Save data in output file
   *
   * @param file_name File name
   * @param data Data to be saved
   * @param n No of patterns
   * @param problem Type of problem (CLASSIFICATION | REGRESSION)
   * @throws IOException
   */
  public void SaveOutputFile(
      String file_name, double data[][], int n, String problem, double[] a, double[] b) {
    String line;
    double outputs[] = new double[Noutputs];

    try {
      // Result file
      FileOutputStream file = new FileOutputStream(file_name);
      BufferedWriter f = new BufferedWriter(new OutputStreamWriter(file));

      // File header
      f.write("@relation " + Attributes.getRelationName() + "\n");
      f.write(Attributes.getInputAttributesHeader());
      f.write(Attributes.getOutputAttributesHeader());
      f.write(Attributes.getInputHeader() + "\n");
      f.write(Attributes.getOutputHeader() + "\n");
      f.write("@data\n");

      // For all patterns
      for (int i = 0; i < n; i++) {

        // Classification
        if (problem.compareToIgnoreCase("Classification") == 0) {
          // Obtain class
          int Class = 0;
          for (int j = 1; j < Noutputs; j++) {
            if (data[i][Class + Ninputs] < data[i][j + Ninputs]) {
              Class = j;
            }
          }
          /*
          f.write(Integer.toString(Class) + " ");
          f.write(Integer.toString(EnsembleGetClassOfPattern(data[i])));
                              f.newLine();
          */
          f.write(Attributes.getOutputAttributes()[0].getNominalValue(Class) + " ");
          f.write(
              Attributes.getOutputAttributes()[0].getNominalValue(
                  EnsembleGetClassOfPattern(data[i])));
          f.newLine();
          f.flush();

        }
        // Regression
        else {
          if (a != null && b != null) {
            for (int j = 0; j < Noutputs; j++) {
              f.write(Double.toString((data[i][Ninputs + j] - b[j]) / a[j]) + " ");
            }
            EnsembleOutput(data[i], outputs);
            for (int j = 0; j < Noutputs; j++) {
              f.write(Double.toString((outputs[j] - b[j]) / a[j]) + " ");
            }
            f.newLine();
          } else {
            for (int j = 0; j < Noutputs; j++) {
              f.write(Double.toString(data[i][Ninputs + j]) + " ");
            }
            EnsembleOutput(data[i], outputs);
            for (int j = 0; j < Noutputs; j++) {
              f.write(Double.toString(outputs[j]) + " ");
            }
            f.newLine();
          }
        }
      }
      f.close();
      file.close();
    } catch (FileNotFoundException e) {
      System.err.println("Training file does not exist");
      System.exit(1);
    } catch (IOException e) {
      e.printStackTrace();
      System.exit(-1);
    }
  }