/* * Begin the shutdown process. * <P> * Close out the SSLEngine if not already done so, then * wrap our outgoing close_notify message and try to send it on. * <P> * Return true when we're done passing the shutdown messsages. */ boolean shutdown() throws IOException { if (!shutdown) { sslEngine.closeOutbound(); shutdown = true; } if (outNetBB.hasRemaining() && tryFlush(outNetBB)) { return false; } /* * By RFC 2616, we can "fire and forget" our close_notify * message, so that's what we'll do here. */ outNetBB.clear(); SSLEngineResult result = sslEngine.wrap(hsBB, outNetBB); if (result.getStatus() != Status.CLOSED) { throw new SSLException("Improper close state"); } outNetBB.flip(); /* * We won't wait for a select here, but if this doesn't work, * we'll cycle back through on the next select. */ if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return (!outNetBB.hasRemaining() && (result.getHandshakeStatus() != HandshakeStatus.NEED_WRAP)); }
/* * Read the channel for more information, then unwrap the * (hopefully application) data we get. * <P> * If we run out of data, we'll return to our caller (possibly using * a Selector) to get notification that more is available. * <P> * Each call to this method will perform at most one underlying read(). */ int read() throws IOException { SSLEngineResult result; if (!initialHSComplete) { throw new IllegalStateException(); } int pos = requestBB.position(); if (sc.read(inNetBB) == -1) { sslEngine.closeInbound(); // probably throws exception return -1; } do { resizeRequestBB(); // expected room for unwrap inNetBB.flip(); result = sslEngine.unwrap(inNetBB, requestBB); inNetBB.compact(); /* * Could check here for a renegotation, but we're only * doing a simple read/write, and won't have enough state * transitions to do a complete handshake, so ignore that * possibility. */ switch (result.getStatus()) { case BUFFER_OVERFLOW: // Reset the application buffer size. appBBSize = sslEngine.getSession().getApplicationBufferSize(); break; case BUFFER_UNDERFLOW: // Resize buffer if needed. netBBSize = sslEngine.getSession().getPacketBufferSize(); if (netBBSize > inNetBB.capacity()) { resizeResponseBB(); break; // break, next read will support larger buffer. } case OK: if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { doTasks(); } break; default: throw new IOException("sslEngine error during data read: " + result.getStatus()); } } while ((inNetBB.position() != 0) && result.getStatus() != Status.BUFFER_UNDERFLOW); return (requestBB.position() - pos); }
/* * Flush any remaining data. * <P> * Return true when the fileChannelBB and outNetBB are empty. */ boolean dataFlush() throws IOException { boolean fileFlushed = true; if ((fileChannelBB != null) && fileChannelBB.hasRemaining()) { doWrite(fileChannelBB); fileFlushed = !fileChannelBB.hasRemaining(); } else if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return (fileFlushed && !outNetBB.hasRemaining()); }
/* * Create and size the buffers appropriately. */ private void createBuffers() { /* * We'll assume the buffer sizes are the same * between client and server. */ SSLSession session = clientEngine.getSession(); int appBufferMax = session.getApplicationBufferSize(); int netBufferMax = session.getPacketBufferSize(); /* * We'll make the input buffers a bit bigger than the max needed * size, so that unwrap()s following a successful data transfer * won't generate BUFFER_OVERFLOWS. * * We'll use a mix of direct and indirect ByteBuffers for * tutorial purposes only. In reality, only use direct * ByteBuffers when they give a clear performance enhancement. */ clientIn = ByteBuffer.allocate(appBufferMax + 50); serverIn = ByteBuffer.allocate(appBufferMax + 50); cTOs = ByteBuffer.allocateDirect(netBufferMax); sTOc = ByteBuffer.allocateDirect(netBufferMax); clientOut = ByteBuffer.wrap("Hi Server, I'm Client".getBytes()); serverOut = ByteBuffer.wrap("Hello Client, I'm Server".getBytes()); }
/* * Try to flush out any existing outbound data, then try to wrap * anything new contained in the src buffer. * <P> * Return the number of bytes actually consumed from the buffer, * but the data may actually be still sitting in the output buffer, * waiting to be flushed. */ private int doWrite(ByteBuffer src) throws IOException { int retValue = 0; if (outNetBB.hasRemaining() && !tryFlush(outNetBB)) { return retValue; } /* * The data buffer is empty, we can reuse the entire buffer. */ outNetBB.clear(); SSLEngineResult result = sslEngine.wrap(src, outNetBB); retValue = result.bytesConsumed(); outNetBB.flip(); switch (result.getStatus()) { case OK: if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { doTasks(); } break; default: throw new IOException("sslEngine error during data write: " + result.getStatus()); } /* * Try to flush the data, regardless of whether or not * it's been selected. Odds of a write buffer being full * is less than a read buffer being empty. */ if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return retValue; }
/* * Static factory method for creating a secure ChannelIO object. * <P> * We need to allocate different sized application data buffers * based on whether we're secure or not. We can't determine * this until our sslEngine is created. */ static ChannelIOSecure getInstance(SocketChannel sc, boolean blocking, SSLContext sslc) throws IOException { ChannelIOSecure cio = new ChannelIOSecure(sc, blocking, sslc); // Create a buffer using the normal expected application size we'll // be getting. This may change, depending on the peer's // SSL implementation. cio.appBBSize = cio.sslEngine.getSession().getApplicationBufferSize(); cio.requestBB = ByteBuffer.allocate(cio.appBBSize); return cio; }
/* * Constructor for a secure ChannelIO variant. */ protected ChannelIOSecure(SocketChannel sc, boolean blocking, SSLContext sslc) throws IOException { super(sc, blocking); /* * We're a server, so no need to use host/port variant. * * The first call for a server is a NEED_UNWRAP. */ sslEngine = sslc.createSSLEngine(); sslEngine.setUseClientMode(false); initialHSStatus = HandshakeStatus.NEED_UNWRAP; initialHSComplete = false; // Create a buffer using the normal expected packet size we'll // be getting. This may change, depending on the peer's // SSL implementation. netBBSize = sslEngine.getSession().getPacketBufferSize(); inNetBB = ByteBuffer.allocate(netBBSize); outNetBB = ByteBuffer.allocate(netBBSize); outNetBB.position(0); outNetBB.limit(0); }
/* * Perform a FileChannel.TransferTo on the socket channel. * <P> * We have to copy the data into an intermediary app ByteBuffer * first, then send it through the SSLEngine. * <P> * We return the number of bytes actually read out of the * filechannel. However, the data may actually be stuck * in the fileChannelBB or the outNetBB. The caller * is responsible for making sure to call dataFlush() * before shutting down. */ long transferTo(FileChannel fc, long pos, long len) throws IOException { if (!initialHSComplete) { throw new IllegalStateException(); } if (fileChannelBB == null) { fileChannelBB = ByteBuffer.allocate(appBBSize); fileChannelBB.limit(0); } fileChannelBB.compact(); int fileRead = fc.read(fileChannelBB); fileChannelBB.flip(); /* * We ignore the return value here, we return the * number of bytes actually consumed from the the file. * We'll flush the output buffer before we start shutting down. */ doWrite(fileChannelBB); return fileRead; }
/* * Simple check to make sure everything came across as expected. */ private static void checkTransfer(ByteBuffer a, ByteBuffer b) throws Exception { a.flip(); b.flip(); if (!a.equals(b)) { throw new Exception("Data didn't transfer cleanly"); } else { log("\tData transferred cleanly"); } a.position(a.limit()); b.position(b.limit()); a.limit(a.capacity()); b.limit(b.capacity()); }
/* * Run the test. * * Sit in a tight loop, both engines calling wrap/unwrap regardless * of whether data is available or not. We do this until both engines * report back they are closed. * * The main loop handles all of the I/O phases of the SSLEngine's * lifetime: * * initial handshaking * application data transfer * engine closing * * One could easily separate these phases into separate * sections of code. */ private SSLSession runTest() throws Exception { boolean dataDone = false; createSSLEngines(); createBuffers(); SSLEngineResult clientResult; // results from client's last operation SSLEngineResult serverResult; // results from server's last operation /* * Examining the SSLEngineResults could be much more involved, * and may alter the overall flow of the application. * * For example, if we received a BUFFER_OVERFLOW when trying * to write to the output pipe, we could reallocate a larger * pipe, but instead we wait for the peer to drain it. */ while (!isEngineClosed(clientEngine) || !isEngineClosed(serverEngine)) { log("================"); clientResult = clientEngine.wrap(clientOut, cTOs); log("client wrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); serverResult = serverEngine.wrap(serverOut, sTOc); log("server wrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); cTOs.flip(); sTOc.flip(); log("----"); clientResult = clientEngine.unwrap(sTOc, clientIn); log("client unwrap: ", clientResult); runDelegatedTasks(clientResult, clientEngine); serverResult = serverEngine.unwrap(cTOs, serverIn); log("server unwrap: ", serverResult); runDelegatedTasks(serverResult, serverEngine); cTOs.compact(); sTOc.compact(); /* * After we've transfered all application data between the client * and server, we close the clientEngine's outbound stream. * This generates a close_notify handshake message, which the * server engine receives and responds by closing itself. */ if (!dataDone && (clientOut.limit() == serverIn.position()) && (serverOut.limit() == clientIn.position())) { /* * A sanity check to ensure we got what was sent. */ checkTransfer(serverOut, clientIn); checkTransfer(clientOut, serverIn); log("\tClosing clientEngine's *OUTBOUND*..."); clientEngine.closeOutbound(); dataDone = true; } } return clientEngine.getSession(); }
private SSLSession runRehandshake() throws Exception { log("\n\n=============================================="); log("Staring actual test."); createSSLEngines(); createBuffers(); SSLEngineResult result; log("Client's ClientHello"); checkResult( clientEngine, clientEngine.wrap(clientOut, cTOs), HandshakeStatus.NEED_UNWRAP, false, true); cTOs.flip(); checkResult( serverEngine, serverEngine.unwrap(cTOs, serverIn), HandshakeStatus.NEED_WRAP, true, false); cTOs.compact(); log("Server's ServerHello/ServerHelloDone"); checkResult( serverEngine, serverEngine.wrap(serverOut, sTOc), HandshakeStatus.NEED_WRAP, false, true); sTOc.flip(); checkResult( clientEngine, clientEngine.unwrap(sTOc, clientIn), HandshakeStatus.NEED_UNWRAP, true, false); sTOc.compact(); log("Server's CCS"); checkResult( serverEngine, serverEngine.wrap(serverOut, sTOc), HandshakeStatus.NEED_WRAP, false, true); sTOc.flip(); checkResult( clientEngine, clientEngine.unwrap(sTOc, clientIn), HandshakeStatus.NEED_UNWRAP, true, false); sTOc.compact(); log("Server's FINISHED"); checkResult( serverEngine, serverEngine.wrap(serverOut, sTOc), HandshakeStatus.NEED_UNWRAP, false, true); sTOc.flip(); checkResult( clientEngine, clientEngine.unwrap(sTOc, clientIn), HandshakeStatus.NEED_WRAP, true, false); sTOc.compact(); log("Client's CCS"); checkResult( clientEngine, clientEngine.wrap(clientOut, cTOs), HandshakeStatus.NEED_WRAP, false, true); cTOs.flip(); checkResult( serverEngine, serverEngine.unwrap(cTOs, serverIn), HandshakeStatus.NEED_UNWRAP, true, false); cTOs.compact(); log("Client's FINISHED should trigger FINISHED messages all around."); checkResult( clientEngine, clientEngine.wrap(clientOut, cTOs), HandshakeStatus.FINISHED, false, true); cTOs.flip(); checkResult( serverEngine, serverEngine.unwrap(cTOs, serverIn), HandshakeStatus.FINISHED, true, false); cTOs.compact(); return clientEngine.getSession(); }
/** * A helper class which performs I/O using the SSLEngine API. * * <p>Each connection has a SocketChannel and a SSLEngine that is used through the lifetime of the * Channel. We allocate byte buffers for use as the outbound and inbound network buffers. * * <PRE> * Application Data * src requestBB * | ^ * | | | * v | | * +----+-----|-----+----+ * | | | * | SSL|Engine | * wrap() | | | unwrap() * | OUTBOUND | INBOUND | * | | | * +----+-----|-----+----+ * | | ^ * | | | * v | * outNetBB inNetBB * Net data * </PRE> * * These buffers handle all of the intermediary data for the SSL connection. To make things easy, * we'll require outNetBB be completely flushed before trying to wrap any more data, but we could * certainly remove that restriction by using larger buffers. * * <p>There are many, many ways to handle compute and I/O strategies. What follows is a relatively * simple one. The reader is encouraged to develop the strategy that best fits the application. * * <p>In most of the non-blocking operations in this class, we let the Selector tell us when we're * ready to attempt an I/O operation (by the application repeatedly calling our methods). Another * option would be to attempt the operation and return from the method when no forward progress can * be made. * * <p>There's lots of room for enhancements and improvement in this example. * * <p>We're checking for SSL/TLS end-of-stream truncation attacks via sslEngine.closeInbound(). When * you reach the end of a input stream via a read() returning -1 or an IOException, we call * sslEngine.closeInbound() to signal to the sslEngine that no more input will be available. If the * peer's close_notify message has not yet been received, this could indicate a trucation attack, in * which an attacker is trying to prematurely close the connection. The closeInbound() will throw an * exception if this condition were present. * * @author Brad R. Wetmore * @author Mark Reinhold * @version %I%, %E% */ class ChannelIOSecure extends ChannelIO { private SSLEngine sslEngine = null; private int appBBSize; private int netBBSize; /* * All I/O goes through these buffers. * <P> * It might be nice to use a cache of ByteBuffers so we're * not alloc/dealloc'ing ByteBuffer's for each new SSLEngine. * <P> * We use our superclass' requestBB for our application input buffer. * Outbound application data is supplied to us by our callers. */ private ByteBuffer inNetBB; private ByteBuffer outNetBB; /* * An empty ByteBuffer for use when one isn't available, say * as a source buffer during initial handshake wraps or for close * operations. */ private static ByteBuffer hsBB = ByteBuffer.allocate(0); /* * The FileChannel we're currently transferTo'ing (reading). */ private ByteBuffer fileChannelBB = null; /* * During our initial handshake, keep track of the next * SSLEngine operation that needs to occur: * * NEED_WRAP/NEED_UNWRAP * * Once the initial handshake has completed, we can short circuit * handshake checks with initialHSComplete. */ private HandshakeStatus initialHSStatus; private boolean initialHSComplete; /* * We have received the shutdown request by our caller, and have * closed our outbound side. */ private boolean shutdown = false; /* * Constructor for a secure ChannelIO variant. */ protected ChannelIOSecure(SocketChannel sc, boolean blocking, SSLContext sslc) throws IOException { super(sc, blocking); /* * We're a server, so no need to use host/port variant. * * The first call for a server is a NEED_UNWRAP. */ sslEngine = sslc.createSSLEngine(); sslEngine.setUseClientMode(false); initialHSStatus = HandshakeStatus.NEED_UNWRAP; initialHSComplete = false; // Create a buffer using the normal expected packet size we'll // be getting. This may change, depending on the peer's // SSL implementation. netBBSize = sslEngine.getSession().getPacketBufferSize(); inNetBB = ByteBuffer.allocate(netBBSize); outNetBB = ByteBuffer.allocate(netBBSize); outNetBB.position(0); outNetBB.limit(0); } /* * Static factory method for creating a secure ChannelIO object. * <P> * We need to allocate different sized application data buffers * based on whether we're secure or not. We can't determine * this until our sslEngine is created. */ static ChannelIOSecure getInstance(SocketChannel sc, boolean blocking, SSLContext sslc) throws IOException { ChannelIOSecure cio = new ChannelIOSecure(sc, blocking, sslc); // Create a buffer using the normal expected application size we'll // be getting. This may change, depending on the peer's // SSL implementation. cio.appBBSize = cio.sslEngine.getSession().getApplicationBufferSize(); cio.requestBB = ByteBuffer.allocate(cio.appBBSize); return cio; } /* * Calls up to the superclass to adjust the buffer size * by an appropriate increment. */ protected void resizeRequestBB() { resizeRequestBB(appBBSize); } /* * Adjust the inbount network buffer to an appropriate size. */ private void resizeResponseBB() { ByteBuffer bb = ByteBuffer.allocate(netBBSize); inNetBB.flip(); bb.put(inNetBB); inNetBB = bb; } /* * Writes bb to the SocketChannel. * <P> * Returns true when the ByteBuffer has no remaining data. */ private boolean tryFlush(ByteBuffer bb) throws IOException { super.write(bb); return !bb.hasRemaining(); } /* * Perform any handshaking processing. * <P> * This variant is for Servers without SelectionKeys (e.g. * blocking). */ boolean doHandshake() throws IOException { return doHandshake(null); } /* * Perform any handshaking processing. * <P> * If a SelectionKey is passed, register for selectable * operations. * <P> * In the blocking case, our caller will keep calling us until * we finish the handshake. Our reads/writes will block as expected. * <P> * In the non-blocking case, we just received the selection notification * that this channel is ready for whatever the operation is, so give * it a try. * <P> * return: * true when handshake is done. * false while handshake is in progress */ boolean doHandshake(SelectionKey sk) throws IOException { SSLEngineResult result; if (initialHSComplete) { return initialHSComplete; } /* * Flush out the outgoing buffer, if there's anything left in * it. */ if (outNetBB.hasRemaining()) { if (!tryFlush(outNetBB)) { return false; } // See if we need to switch from write to read mode. switch (initialHSStatus) { /* * Is this the last buffer? */ case FINISHED: initialHSComplete = true; // Fall-through to reregister need for a Read. case NEED_UNWRAP: if (sk != null) { sk.interestOps(SelectionKey.OP_READ); } break; } return initialHSComplete; } switch (initialHSStatus) { case NEED_UNWRAP: if (sc.read(inNetBB) == -1) { sslEngine.closeInbound(); return initialHSComplete; } needIO: while (initialHSStatus == HandshakeStatus.NEED_UNWRAP) { resizeRequestBB(); // expected room for unwrap inNetBB.flip(); result = sslEngine.unwrap(inNetBB, requestBB); inNetBB.compact(); initialHSStatus = result.getHandshakeStatus(); switch (result.getStatus()) { case OK: switch (initialHSStatus) { case NOT_HANDSHAKING: throw new IOException("Not handshaking during initial handshake"); case NEED_TASK: initialHSStatus = doTasks(); break; case FINISHED: initialHSComplete = true; break needIO; } break; case BUFFER_UNDERFLOW: // Resize buffer if needed. netBBSize = sslEngine.getSession().getPacketBufferSize(); if (netBBSize > inNetBB.capacity()) { resizeResponseBB(); } /* * Need to go reread the Channel for more data. */ if (sk != null) { sk.interestOps(SelectionKey.OP_READ); } break needIO; case BUFFER_OVERFLOW: // Reset the application buffer size. appBBSize = sslEngine.getSession().getApplicationBufferSize(); break; default: // CLOSED: throw new IOException("Received" + result.getStatus() + "during initial handshaking"); } } // "needIO" block. /* * Just transitioned from read to write. */ if (initialHSStatus != HandshakeStatus.NEED_WRAP) { break; } // Fall through and fill the write buffers. case NEED_WRAP: /* * The flush above guarantees the out buffer to be empty */ outNetBB.clear(); result = sslEngine.wrap(hsBB, outNetBB); outNetBB.flip(); initialHSStatus = result.getHandshakeStatus(); switch (result.getStatus()) { case OK: if (initialHSStatus == HandshakeStatus.NEED_TASK) { initialHSStatus = doTasks(); } if (sk != null) { sk.interestOps(SelectionKey.OP_WRITE); } break; default: // BUFFER_OVERFLOW/BUFFER_UNDERFLOW/CLOSED: throw new IOException("Received" + result.getStatus() + "during initial handshaking"); } break; default: // NOT_HANDSHAKING/NEED_TASK/FINISHED throw new RuntimeException("Invalid Handshaking State" + initialHSStatus); } // switch return initialHSComplete; } /* * Do all the outstanding handshake tasks in the current Thread. */ private SSLEngineResult.HandshakeStatus doTasks() { Runnable runnable; /* * We could run this in a separate thread, but * do in the current for now. */ while ((runnable = sslEngine.getDelegatedTask()) != null) { runnable.run(); } return sslEngine.getHandshakeStatus(); } /* * Read the channel for more information, then unwrap the * (hopefully application) data we get. * <P> * If we run out of data, we'll return to our caller (possibly using * a Selector) to get notification that more is available. * <P> * Each call to this method will perform at most one underlying read(). */ int read() throws IOException { SSLEngineResult result; if (!initialHSComplete) { throw new IllegalStateException(); } int pos = requestBB.position(); if (sc.read(inNetBB) == -1) { sslEngine.closeInbound(); // probably throws exception return -1; } do { resizeRequestBB(); // expected room for unwrap inNetBB.flip(); result = sslEngine.unwrap(inNetBB, requestBB); inNetBB.compact(); /* * Could check here for a renegotation, but we're only * doing a simple read/write, and won't have enough state * transitions to do a complete handshake, so ignore that * possibility. */ switch (result.getStatus()) { case BUFFER_OVERFLOW: // Reset the application buffer size. appBBSize = sslEngine.getSession().getApplicationBufferSize(); break; case BUFFER_UNDERFLOW: // Resize buffer if needed. netBBSize = sslEngine.getSession().getPacketBufferSize(); if (netBBSize > inNetBB.capacity()) { resizeResponseBB(); break; // break, next read will support larger buffer. } case OK: if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { doTasks(); } break; default: throw new IOException("sslEngine error during data read: " + result.getStatus()); } } while ((inNetBB.position() != 0) && result.getStatus() != Status.BUFFER_UNDERFLOW); return (requestBB.position() - pos); } /* * Try to write out as much as possible from the src buffer. */ int write(ByteBuffer src) throws IOException { if (!initialHSComplete) { throw new IllegalStateException(); } return doWrite(src); } /* * Try to flush out any existing outbound data, then try to wrap * anything new contained in the src buffer. * <P> * Return the number of bytes actually consumed from the buffer, * but the data may actually be still sitting in the output buffer, * waiting to be flushed. */ private int doWrite(ByteBuffer src) throws IOException { int retValue = 0; if (outNetBB.hasRemaining() && !tryFlush(outNetBB)) { return retValue; } /* * The data buffer is empty, we can reuse the entire buffer. */ outNetBB.clear(); SSLEngineResult result = sslEngine.wrap(src, outNetBB); retValue = result.bytesConsumed(); outNetBB.flip(); switch (result.getStatus()) { case OK: if (result.getHandshakeStatus() == HandshakeStatus.NEED_TASK) { doTasks(); } break; default: throw new IOException("sslEngine error during data write: " + result.getStatus()); } /* * Try to flush the data, regardless of whether or not * it's been selected. Odds of a write buffer being full * is less than a read buffer being empty. */ if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return retValue; } /* * Perform a FileChannel.TransferTo on the socket channel. * <P> * We have to copy the data into an intermediary app ByteBuffer * first, then send it through the SSLEngine. * <P> * We return the number of bytes actually read out of the * filechannel. However, the data may actually be stuck * in the fileChannelBB or the outNetBB. The caller * is responsible for making sure to call dataFlush() * before shutting down. */ long transferTo(FileChannel fc, long pos, long len) throws IOException { if (!initialHSComplete) { throw new IllegalStateException(); } if (fileChannelBB == null) { fileChannelBB = ByteBuffer.allocate(appBBSize); fileChannelBB.limit(0); } fileChannelBB.compact(); int fileRead = fc.read(fileChannelBB); fileChannelBB.flip(); /* * We ignore the return value here, we return the * number of bytes actually consumed from the the file. * We'll flush the output buffer before we start shutting down. */ doWrite(fileChannelBB); return fileRead; } /* * Flush any remaining data. * <P> * Return true when the fileChannelBB and outNetBB are empty. */ boolean dataFlush() throws IOException { boolean fileFlushed = true; if ((fileChannelBB != null) && fileChannelBB.hasRemaining()) { doWrite(fileChannelBB); fileFlushed = !fileChannelBB.hasRemaining(); } else if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return (fileFlushed && !outNetBB.hasRemaining()); } /* * Begin the shutdown process. * <P> * Close out the SSLEngine if not already done so, then * wrap our outgoing close_notify message and try to send it on. * <P> * Return true when we're done passing the shutdown messsages. */ boolean shutdown() throws IOException { if (!shutdown) { sslEngine.closeOutbound(); shutdown = true; } if (outNetBB.hasRemaining() && tryFlush(outNetBB)) { return false; } /* * By RFC 2616, we can "fire and forget" our close_notify * message, so that's what we'll do here. */ outNetBB.clear(); SSLEngineResult result = sslEngine.wrap(hsBB, outNetBB); if (result.getStatus() != Status.CLOSED) { throw new SSLException("Improper close state"); } outNetBB.flip(); /* * We won't wait for a select here, but if this doesn't work, * we'll cycle back through on the next select. */ if (outNetBB.hasRemaining()) { tryFlush(outNetBB); } return (!outNetBB.hasRemaining() && (result.getHandshakeStatus() != HandshakeStatus.NEED_WRAP)); } /* * close() is not overridden */ }
/* * Perform any handshaking processing. * <P> * If a SelectionKey is passed, register for selectable * operations. * <P> * In the blocking case, our caller will keep calling us until * we finish the handshake. Our reads/writes will block as expected. * <P> * In the non-blocking case, we just received the selection notification * that this channel is ready for whatever the operation is, so give * it a try. * <P> * return: * true when handshake is done. * false while handshake is in progress */ boolean doHandshake(SelectionKey sk) throws IOException { SSLEngineResult result; if (initialHSComplete) { return initialHSComplete; } /* * Flush out the outgoing buffer, if there's anything left in * it. */ if (outNetBB.hasRemaining()) { if (!tryFlush(outNetBB)) { return false; } // See if we need to switch from write to read mode. switch (initialHSStatus) { /* * Is this the last buffer? */ case FINISHED: initialHSComplete = true; // Fall-through to reregister need for a Read. case NEED_UNWRAP: if (sk != null) { sk.interestOps(SelectionKey.OP_READ); } break; } return initialHSComplete; } switch (initialHSStatus) { case NEED_UNWRAP: if (sc.read(inNetBB) == -1) { sslEngine.closeInbound(); return initialHSComplete; } needIO: while (initialHSStatus == HandshakeStatus.NEED_UNWRAP) { resizeRequestBB(); // expected room for unwrap inNetBB.flip(); result = sslEngine.unwrap(inNetBB, requestBB); inNetBB.compact(); initialHSStatus = result.getHandshakeStatus(); switch (result.getStatus()) { case OK: switch (initialHSStatus) { case NOT_HANDSHAKING: throw new IOException("Not handshaking during initial handshake"); case NEED_TASK: initialHSStatus = doTasks(); break; case FINISHED: initialHSComplete = true; break needIO; } break; case BUFFER_UNDERFLOW: // Resize buffer if needed. netBBSize = sslEngine.getSession().getPacketBufferSize(); if (netBBSize > inNetBB.capacity()) { resizeResponseBB(); } /* * Need to go reread the Channel for more data. */ if (sk != null) { sk.interestOps(SelectionKey.OP_READ); } break needIO; case BUFFER_OVERFLOW: // Reset the application buffer size. appBBSize = sslEngine.getSession().getApplicationBufferSize(); break; default: // CLOSED: throw new IOException("Received" + result.getStatus() + "during initial handshaking"); } } // "needIO" block. /* * Just transitioned from read to write. */ if (initialHSStatus != HandshakeStatus.NEED_WRAP) { break; } // Fall through and fill the write buffers. case NEED_WRAP: /* * The flush above guarantees the out buffer to be empty */ outNetBB.clear(); result = sslEngine.wrap(hsBB, outNetBB); outNetBB.flip(); initialHSStatus = result.getHandshakeStatus(); switch (result.getStatus()) { case OK: if (initialHSStatus == HandshakeStatus.NEED_TASK) { initialHSStatus = doTasks(); } if (sk != null) { sk.interestOps(SelectionKey.OP_WRITE); } break; default: // BUFFER_OVERFLOW/BUFFER_UNDERFLOW/CLOSED: throw new IOException("Received" + result.getStatus() + "during initial handshaking"); } break; default: // NOT_HANDSHAKING/NEED_TASK/FINISHED throw new RuntimeException("Invalid Handshaking State" + initialHSStatus); } // switch return initialHSComplete; }
/* * Writes bb to the SocketChannel. * <P> * Returns true when the ByteBuffer has no remaining data. */ private boolean tryFlush(ByteBuffer bb) throws IOException { super.write(bb); return !bb.hasRemaining(); }
/* * Adjust the inbount network buffer to an appropriate size. */ private void resizeResponseBB() { ByteBuffer bb = ByteBuffer.allocate(netBBSize); inNetBB.flip(); bb.put(inNetBB); inNetBB = bb; }