public double[][] Eigenvectors(Matrix m) { EigenvalueDecomposition decomposition = m.eig(); Matrix eigenVectorsMatrix = decomposition.getV(); double[][] eigenvectors = eigenVectorsMatrix.getArray(); // System.out.println("eigenvectors matrix"); // eigenVectorsMatrix.print(2,2); return eigenvectors; }
public double[] Eigenvalues(Matrix m) { EigenvalueDecomposition decomposition = m.eig(); double[] eigenvalues = decomposition.getRealEigenvalues(); // System.out.println("eigenvalues: "); // for(int i=0;i<eigenvalues.length;i++) // System.out.println(""+eigenvalues[i]); return eigenvalues; }
/** * Returns the best cut of a graph w.r.t. the degree of dissimilarity between points of different * partitions and the degree of similarity between points of the same partition. * * @param W the weight matrix of the graph * @return an array of two elements, each of these contains the points of a partition */ protected static int[][] bestCut(DoubleMatrix2D W) { int n = W.columns(); // Builds the diagonal matrices D and D^(-1/2) (represented as their diagonals) DoubleMatrix1D d = DoubleFactory1D.dense.make(n); DoubleMatrix1D d_minus_1_2 = DoubleFactory1D.dense.make(n); for (int i = 0; i < n; i++) { double d_i = W.viewRow(i).zSum(); d.set(i, d_i); d_minus_1_2.set(i, 1 / Math.sqrt(d_i)); } DoubleMatrix2D D = DoubleFactory2D.sparse.diagonal(d); // System.out.println("DoubleMatrix2D :\n"+D.toString()); DoubleMatrix2D X = D.copy(); // System.out.println("DoubleMatrix2D copy :\n"+X.toString()); // X = D^(-1/2) * (D - W) * D^(-1/2) X.assign(W, Functions.minus); // System.out.println("DoubleMatrix2D X: (D-W) :\n"+X.toString()); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) X.set(i, j, X.get(i, j) * d_minus_1_2.get(i) * d_minus_1_2.get(j)); // Computes the eigenvalues and the eigenvectors of X EigenvalueDecomposition e = new EigenvalueDecomposition(X); DoubleMatrix1D lambda = e.getRealEigenvalues(); // Selects the eigenvector z_2 associated with the second smallest eigenvalue // Creates a map that contains the pairs <index, eigenvalue> AbstractIntDoubleMap map = new OpenIntDoubleHashMap(n); for (int i = 0; i < n; i++) map.put(i, Math.abs(lambda.get(i))); IntArrayList list = new IntArrayList(); // Sorts the map on the value map.keysSortedByValue(list); // Gets the index of the second smallest element int i_2 = list.get(1); // y_2 = D^(-1/2) * z_2 DoubleMatrix1D y_2 = e.getV().viewColumn(i_2).copy(); y_2.assign(d_minus_1_2, Functions.mult); // Creates a map that contains the pairs <i, y_2[i]> map.clear(); for (int i = 0; i < n; i++) map.put(i, y_2.get(i)); // Sorts the map on the value map.keysSortedByValue(list); // Search the element in the map previuosly ordered that minimizes the cut // of the partition double best_cut = Double.POSITIVE_INFINITY; int[][] partition = new int[2][]; // The array v contains all the elements of the graph ordered by their // projection on vector y_2 int[] v = list.elements(); // For each admissible splitting point i for (int i = 1; i < n; i++) { // The array a contains all the elements that have a projection on vector // y_2 less or equal to the one of i-th element // The array b contains the remaining elements int[] a = new int[i]; int[] b = new int[n - i]; System.arraycopy(v, 0, a, 0, i); System.arraycopy(v, i, b, 0, n - i); double cut = Ncut(W, a, b, v); if (cut < best_cut) { best_cut = cut; partition[0] = a; partition[1] = b; } } // System.out.println("Partition:"); // UtilsJS.printMatrix(partition); return partition; }