Exemple #1
0
 /**
  * Helper to create the DataInfo object from training/validation frames and the DL parameters
  *
  * @param train Training frame
  * @param valid Validation frame
  * @param parms Model parameters
  * @param nClasses Number of response levels (1: regression, >=2: classification)
  * @return DataInfo
  */
 static DataInfo makeDataInfo(
     Frame train, Frame valid, DeepLearningParameters parms, int nClasses) {
   double x = 0.782347234;
   boolean identityLink = new Distribution(parms._distribution, parms._tweedie_power).link(x) == x;
   DataInfo dinfo =
       new DataInfo(
           train,
           valid,
           parms._autoencoder ? 0 : 1, // nResponses
           parms._autoencoder
               || parms._use_all_factor_levels, // use all FactorLevels for auto-encoder
           parms._standardize
               ? (parms._autoencoder
                   ? DataInfo.TransformType.NORMALIZE
                   : parms._sparse
                       ? DataInfo.TransformType.DESCALE
                       : DataInfo.TransformType.STANDARDIZE)
               : DataInfo.TransformType.NONE, // transform predictors
           !parms._standardize || train.lastVec().isCategorical()
               ? DataInfo.TransformType.NONE
               : identityLink
                   ? DataInfo.TransformType.STANDARDIZE
                   : DataInfo.TransformType
                       .NONE, // transform response for regression with identity link
           parms._missing_values_handling
               == DeepLearningParameters.MissingValuesHandling.Skip, // whether to skip missing
           false, // do not replace NAs in numeric cols with mean
           true, // always add a bucket for missing values
           parms._weights_column != null, // observation weights
           parms._offset_column != null,
           parms._fold_column != null);
   // Checks and adjustments:
   // 1) observation weights (adjust mean/sigmas for predictors and response)
   // 2) NAs (check that there's enough rows left)
   GLMTask.YMUTask ymt =
       new GLMTask.YMUTask(
               dinfo,
               nClasses,
               true,
               !parms._autoencoder && nClasses == 1,
               false,
               !parms._autoencoder)
           .doAll(dinfo._adaptedFrame);
   if (ymt._wsum == 0
       && parms._missing_values_handling == DeepLearningParameters.MissingValuesHandling.Skip)
     throw new H2OIllegalArgumentException(
         "No rows left in the dataset after filtering out rows with missing values. Ignore columns with many NAs or set missing_values_handling to 'MeanImputation'.");
   if (parms._weights_column != null && parms._offset_column != null) {
     Log.warn(
         "Combination of offset and weights can lead to slight differences because Rollupstats aren't weighted - need to re-calculate weighted mean/sigma of the response including offset terms.");
   }
   if (parms._weights_column != null
       && parms._offset_column == null /*FIXME: offset not yet implemented*/) {
     dinfo.updateWeightedSigmaAndMean(ymt._basicStats.sigma(), ymt._basicStats.mean());
     if (nClasses == 1)
       dinfo.updateWeightedSigmaAndMeanForResponse(
           ymt._basicStatsResponse.sigma(), ymt._basicStatsResponse.mean());
   }
   return dinfo;
 }
Exemple #2
0
    /**
     * Train a Deep Learning model, assumes that all members are populated If checkpoint == null,
     * then start training a new model, otherwise continue from a checkpoint
     */
    public final void buildModel() {
      DeepLearningModel cp = null;
      if (_parms._checkpoint == null) {
        cp =
            new DeepLearningModel(
                dest(),
                _parms,
                new DeepLearningModel.DeepLearningModelOutput(DeepLearning.this),
                _train,
                _valid,
                nclasses());
        cp.model_info().initializeMembers();
      } else {
        final DeepLearningModel previous = DKV.getGet(_parms._checkpoint);
        if (previous == null) throw new IllegalArgumentException("Checkpoint not found.");
        Log.info("Resuming from checkpoint.");
        _job.update(0, "Resuming from checkpoint");

        if (isClassifier() != previous._output.isClassifier())
          throw new H2OIllegalArgumentException(
              "Response type must be the same as for the checkpointed model.");
        if (isSupervised() != previous._output.isSupervised())
          throw new H2OIllegalArgumentException(
              "Model type must be the same as for the checkpointed model.");

        // check the user-given arguments for consistency
        DeepLearningParameters oldP =
            previous._parms; // sanitized parameters for checkpointed model
        DeepLearningParameters newP = _parms; // user-given parameters for restart

        DeepLearningParameters oldP2 = (DeepLearningParameters) oldP.clone();
        DeepLearningParameters newP2 = (DeepLearningParameters) newP.clone();
        DeepLearningParameters.Sanity.modifyParms(
            oldP, oldP2, nclasses()); // sanitize the user-given parameters
        DeepLearningParameters.Sanity.modifyParms(
            newP, newP2, nclasses()); // sanitize the user-given parameters
        DeepLearningParameters.Sanity.checkpoint(oldP2, newP2);

        DataInfo dinfo;
        try {
          // PUBDEV-2513: Adapt _train and _valid (in-place) to match the frames that were used for
          // the previous model
          // This can add or remove dummy columns (can happen if the dataset is sparse and datasets
          // have different non-const columns)
          for (String st : previous.adaptTestForTrain(_train, true, false)) Log.warn(st);
          for (String st : previous.adaptTestForTrain(_valid, true, false)) Log.warn(st);
          dinfo = makeDataInfo(_train, _valid, _parms, nclasses());
          DKV.put(dinfo);
          cp = new DeepLearningModel(dest(), _parms, previous, false, dinfo);
          cp.write_lock(_job);

          if (!Arrays.equals(cp._output._names, previous._output._names)) {
            throw new H2OIllegalArgumentException(
                "The columns of the training data must be the same as for the checkpointed model. Check ignored columns (or disable ignore_const_cols).");
          }
          if (!Arrays.deepEquals(cp._output._domains, previous._output._domains)) {
            throw new H2OIllegalArgumentException(
                "Categorical factor levels of the training data must be the same as for the checkpointed model.");
          }
          if (dinfo.fullN() != previous.model_info().data_info().fullN()) {
            throw new H2OIllegalArgumentException(
                "Total number of predictors is different than for the checkpointed model.");
          }
          if (_parms._epochs <= previous.epoch_counter) {
            throw new H2OIllegalArgumentException(
                "Total number of epochs must be larger than the number of epochs already trained for the checkpointed model ("
                    + previous.epoch_counter
                    + ").");
          }

          // these are the mutable parameters that are to be used by the model (stored in
          // model_info._parms)
          final DeepLearningParameters actualNewP =
              cp.model_info()
                  .get_params(); // actually used parameters for model building (defaults filled in,
                                 // etc.)
          assert (actualNewP != previous.model_info().get_params());
          assert (actualNewP != newP);
          assert (actualNewP != oldP);
          DeepLearningParameters.Sanity.update(actualNewP, newP, nclasses());

          Log.info(
              "Continuing training after "
                  + String.format("%.3f", previous.epoch_counter)
                  + " epochs from the checkpointed model.");
          cp.update(_job);
        } catch (H2OIllegalArgumentException ex) {
          if (cp != null) {
            cp.unlock(_job);
            cp.delete();
            cp = null;
          }
          throw ex;
        } finally {
          if (cp != null) cp.unlock(_job);
        }
      }
      trainModel(cp);

      // clean up, but don't delete weights and biases if user asked for export
      List<Key> keep = new ArrayList<>();
      try {
        if (_parms._export_weights_and_biases
            && cp._output.weights != null
            && cp._output.biases != null) {
          for (Key k : Arrays.asList(cp._output.weights)) {
            keep.add(k);
            for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
              keep.add(vk._key);
            }
          }
          for (Key k : Arrays.asList(cp._output.biases)) {
            keep.add(k);
            for (Vec vk : ((Frame) DKV.getGet(k)).vecs()) {
              keep.add(vk._key);
            }
          }
        }
      } finally {
        Scope.exit(keep.toArray(new Key[keep.size()]));
      }
    }