/** * Indicates if a VisAD MathType is compatible with this instance. A RealType is compatible if its * {@link RealType#equalsExceptNameButUnits} method returns true when given the return value of * {@link #getRealType()} and if this quantity has no coordinate system transformation. A * RealTupleType is compatible if its {@link RealTupleType#equalsExceptNameButUnits} method * returns true when given the return value of {@link #getRealTupleType()} and if the coordinate * system transformations are compatible. A SetType is compatible if its RealTupleType is * compatible. A FunctionType is compatible if the MathType of its range is compatible. All other * MathTypes are incompatible. * * @param type The VisAD MathType to examine for compatibility. * @return <code>true</code> if and only if the MathType is compatible with this instance. * @throws VisADException VisAD failure. */ public boolean isCompatible(MathType type) throws VisADException { boolean isCompatible; if (type instanceof RealType) { isCompatible = ((RealType) type).equalsExceptNameButUnits(realType) && (getRealTupleType().getCoordinateSystem() == null); } else if (type instanceof RealTupleType) { RealTupleType thisTupleType = getRealTupleType(); RealTupleType thatTupleType = (RealTupleType) type; if (!thatTupleType.equalsExceptNameButUnits(thisTupleType)) { isCompatible = false; } else { CoordinateSystem thisCS = thisTupleType.getCoordinateSystem(); CoordinateSystem thatCS = thatTupleType.getCoordinateSystem(); isCompatible = ((thisCS == null) ? thatCS == null : thisCS.getReference().equalsExceptNameButUnits(thatCS.getReference())); } } else if (type instanceof SetType) { isCompatible = isCompatible(((SetType) type).getDomain()); } else if (type instanceof FunctionType) { isCompatible = isCompatible(((FunctionType) type).getRange()); } else { isCompatible = false; } return isCompatible; }
private String tryGrid(VariableEnhanced v) { Formatter buff = new Formatter(); buff.format("%s:", v.getFullName()); List<CoordinateSystem> csList = v.getCoordinateSystems(); if (csList.size() == 0) buff.format(" No Coord System found"); else { for (CoordinateSystem cs : csList) { buff.format("%s:", cs.getName()); if (GridCoordSys.isGridCoordSys(buff, cs, v)) { buff.format("GRID OK%n"); } else { buff.format(" NOT GRID"); } } } return buff.toString(); }
public VariableBean(VariableEnhanced v) { this.ve = v; setName(v.getFullName()); setDescription(v.getDescription()); setUnits(v.getUnitsString()); // collect dimensions StringBuilder lens = new StringBuilder(); StringBuilder names = new StringBuilder(); java.util.List dims = v.getDimensions(); for (int j = 0; j < dims.size(); j++) { ucar.nc2.Dimension dim = (ucar.nc2.Dimension) dims.get(j); if (j > 0) { lens.append(","); names.append(","); } String name = dim.isShared() ? dim.getShortName() : "anon"; names.append(name); lens.append(dim.getLength()); } setDims(names.toString()); setShape(lens.toString()); StringBuilder buff = new StringBuilder(); List<CoordinateSystem> csList = v.getCoordinateSystems(); for (CoordinateSystem cs : csList) { if (firstCoordSys == null) firstCoordSys = cs; else buff.append("; "); buff.append(cs.getName()); Formatter gridBuff = new Formatter(); if (GridCoordSys.isGridCoordSys(gridBuff, cs, v)) { addDataType("grid"); } /* else if (PointDatasetDefaultHandler.isPointFeatureDataset(ds)) { addDataType("point"); } */ } setCoordSys(buff.toString()); }
private void setSelectedCoordinateAxes(CoordinateSystem cs) { List axesList = cs.getCoordinateAxes(); if (axesList.size() == 0) return; CoordinateAxis axis = (CoordinateAxis) axesList.get(0); List beans = axisTable.getBeans(); for (Object bean1 : beans) { AxisBean bean = (AxisBean) bean1; if (bean.axis == axis) { axisTable.setSelectedBean(bean); return; } } }
public CoordinateSystemBean(CoordinateSystem cs) { this.coordSys = cs; setCoordSys(cs.getName()); setGeoXY(cs.isGeoXY()); setLatLon(cs.isLatLon()); setProductSet(cs.isProductSet()); setRegular(cs.isRegular()); setDomainRank(cs.getDomain().size()); setRangeRank(cs.getCoordinateAxes().size()); coverageType = CoverageCSFactory.describe(null, cs); if (GridCoordSys.isGridCoordSys(parseInfo, cs, null)) { addDataType("grid"); } if (RadialCoordSys.isRadialCoordSys(parseInfo, cs)) { addDataType("radial"); } StringBuilder buff = new StringBuilder(); List ctList = cs.getCoordinateTransforms(); for (int i = 0; i < ctList.size(); i++) { CoordinateTransform ct = (CoordinateTransform) ctList.get(i); if (i > 0) buff.append(" "); buff.append(ct.getTransformType()); if (ct instanceof VerticalCT) buff.append("(").append(((VerticalCT) ct).getVerticalTransformType()).append(")"); if (ct instanceof ProjectionCT) { ProjectionCT pct = (ProjectionCT) ct; if (pct.getProjection() != null) { buff.append("(").append(pct.getProjection().getClassName()).append(")"); } } } setCoordTransforms(buff.toString()); }
public boolean isImplicit() { return coordSys.isImplicit(); }
public synchronized void drag_direct(VisADRay ray, boolean first, int mouseModifiers) { if (barbValues == null || ref == null || shadow == null) return; if (first) { stop = false; } else { if (stop) return; } // modify direction if mshift != 0 // modify speed if mctrl != 0 // modify speed and direction if neither int mshift = mouseModifiers & InputEvent.SHIFT_MASK; int mctrl = mouseModifiers & InputEvent.CTRL_MASK; float o_x = (float) ray.position[0]; float o_y = (float) ray.position[1]; float o_z = (float) ray.position[2]; float d_x = (float) ray.vector[0]; float d_y = (float) ray.vector[1]; float d_z = (float) ray.vector[2]; if (pickCrawlToCursor) { if (first) { offset_count = OFFSET_COUNT_INIT; } else { if (offset_count > 0) offset_count--; } if (offset_count > 0) { float mult = ((float) offset_count) / ((float) OFFSET_COUNT_INIT); o_x += mult * offsetx; o_y += mult * offsety; o_z += mult * offsetz; } } if (first || refirst) { point_x = barbValues[2]; point_y = barbValues[3]; point_z = 0.0f; line_x = 0.0f; line_y = 0.0f; line_z = 1.0f; // lineAxis == 2 in DataRenderer.drag_direct } // end if (first || refirst) float[] x = new float[3]; // x marks the spot // DirectManifoldDimension = 2 // intersect ray with plane float dot = (point_x - o_x) * line_x + (point_y - o_y) * line_y + (point_z - o_z) * line_z; float dot2 = d_x * line_x + d_y * line_y + d_z * line_z; if (dot2 == 0.0) return; dot = dot / dot2; // x is intersection x[0] = o_x + dot * d_x; x[1] = o_y + dot * d_y; x[2] = o_z + dot * d_z; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ try { Tuple data = (Tuple) link.getData(); int n = ((TupleType) data.getType()).getNumberOfRealComponents(); Real[] reals = new Real[n]; int k = 0; int m = data.getDimension(); for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { reals[k++] = (Real) component; } else if (component instanceof RealTuple) { for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { reals[k++] = (Real) ((RealTuple) component).getComponent(j); } } } if (first || refirst) { // get first Data flow vector for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; data_flow[i] = (j >= 0) ? (float) reals[j].getValue() : 0.0f; } if (coord != null) { float[][] ds = {{data_flow[0]}, {data_flow[1]}, {data_flow[2]}}; ds = coord.toReference(ds); data_flow[0] = ds[0][0]; data_flow[1] = ds[1][0]; data_flow[2] = ds[2][0]; } data_speed = (float) Math.sqrt( data_flow[0] * data_flow[0] + data_flow[1] * data_flow[1] + data_flow[2] * data_flow[2]); float barb0 = barbValues[2] - barbValues[0]; float barb1 = barbValues[3] - barbValues[1]; /* System.out.println("data_flow = " + data_flow[0] + " " + data_flow[1] + " " + data_flow[2]); System.out.println("barbValues = " + barbValues[0] + " " + barbValues[1] + " " + barbValues[2] + " " + barbValues[3]); System.out.println("data_speed = " + data_speed); */ } // end if (first || refirst) // convert x to a flow vector, and from spatial to earth if (getRealVectorTypes(which_barb) instanceof EarthVectorType) { // don't worry about vector magnitude - // data_speed & display_speed take care of that float eps = 0.0001f; // estimate derivative with a little vector float[][] spatial_locs = { {barbValues[0], barbValues[0] + eps * (x[0] - barbValues[0])}, {barbValues[1], barbValues[1] + eps * (x[1] - barbValues[1])}, {0.0f, 0.0f} }; /* System.out.println("spatial_locs = " + spatial_locs[0][0] + " " + spatial_locs[0][1] + " " + spatial_locs[1][0] + " " + spatial_locs[1][1]); */ float[][] earth_locs = spatialToEarth(spatial_locs); // WLH - 18 Aug 99 if (earth_locs == null) return; /* System.out.println("earth_locs = " + earth_locs[0][0] + " " + earth_locs[0][1] + " " + earth_locs[1][0] + " " + earth_locs[1][1]); */ x[2] = 0.0f; x[0] = (earth_locs[1][1] - earth_locs[1][0]) * ((float) Math.cos(Data.DEGREES_TO_RADIANS * earth_locs[0][0])); x[1] = earth_locs[0][1] - earth_locs[0][0]; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // if (!(getRealVectorTypes(which_barb) instanceof EarthVectorType)) // convert x to vector x[0] -= barbValues[0]; x[1] -= barbValues[1]; // adjust for spatial map scalings but don't worry about vector // magnitude - data_speed & display_speed take care of that // also, spatial is Cartesian double[] ranges = getRanges(); for (int i = 0; i < 3; i++) { x[i] /= ranges[i]; } /* System.out.println("ranges = " + ranges[0] + " " + ranges[1] + " " + ranges[2]); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } // WLH 6 August 99 x[0] = -x[0]; x[1] = -x[1]; x[2] = -x[2]; /* may need to do this for performance float[] xx = {x[0], x[1], x[2]}; addPoint(xx); */ float x_speed = (float) Math.sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); /* WLH 16 April 2002 - from Ken if (x_speed < 0.000001f) x_speed = 0.000001f; */ if (x_speed < 0.01f) x_speed = 0.01f; if (first || refirst) { display_speed = x_speed; } refirst = false; if (mshift != 0) { // only modify data_flow direction float ratio = data_speed / x_speed; x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; /* System.out.println("direction, ratio = " + ratio + " " + data_speed + " " + x_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else if (mctrl != 0) { // only modify data_flow speed float ratio = x_speed / display_speed; if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; refirst = true; } x[0] = ratio * data_flow[0]; x[1] = ratio * data_flow[1]; x[2] = ratio * data_flow[2]; /* System.out.println("speed, ratio = " + ratio + " " + x_speed + " " + display_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // modify data_flow speed and direction float ratio = data_speed / display_speed; /* System.out.println("data_speed = " + data_speed + " display_speed = " + display_speed + " ratio = " + ratio + " EPS = " + EPS); System.out.println("x = " + x[0] + " " + x[1] +" " + x[2] + " x_speed = " + x_speed); data_speed = 21.213203 display_speed = 0.01 ratio = 2121.3203 EPS = 0.2 x = 1.6170928E-4 1.6021729E-4 -0.0 x_speed = 0.01 wind = (0.3430372, 0.33987218) at (-35.0, 5.0) */ if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; x[0] = data_flow[0]; x[1] = data_flow[1]; x[2] = data_flow[2]; refirst = true; } else { x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; } } if (coord != null) { float[][] xs = {{x[0]}, {x[1]}, {x[2]}}; xs = coord.fromReference(xs); x[0] = xs[0][0]; x[1] = xs[1][0]; x[2] = xs[2][0]; } // now replace flow values Vector vect = new Vector(); for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; if (j >= 0) { RealType rtype = (RealType) reals[j].getType(); reals[j] = new Real(rtype, (double) x[i], rtype.getDefaultUnit(), null); // WLH 31 Aug 2000 Real r = reals[j]; Unit overrideUnit = null; if (directMap[i] != null) { overrideUnit = directMap[i].getOverrideUnit(); } Unit rtunit = rtype.getDefaultUnit(); // units not part of Time string if (overrideUnit != null && !overrideUnit.equals(rtunit) && !RealType.Time.equals(rtype)) { double d = (float) overrideUnit.toThis((double) x[0], rtunit); r = new Real(rtype, d, overrideUnit); String valueString = r.toValueString(); vect.addElement(rtype.getName() + " = " + valueString); } else { // create location string vect.addElement(rtype.getName() + " = " + x[i]); } } } getDisplayRenderer().setCursorStringVector(vect); Data newData = null; // now build new RealTuple or Flat Tuple if (data instanceof RealTuple) { newData = new RealTuple( ((RealTupleType) data.getType()), reals, ((RealTuple) data).getCoordinateSystem()); } else { Data[] new_components = new Data[m]; k = 0; for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { new_components[i] = reals[k++]; } else if (component instanceof RealTuple) { Real[] sub_reals = new Real[((RealTuple) component).getDimension()]; for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { sub_reals[j] = reals[k++]; } new_components[i] = new RealTuple( ((RealTupleType) component.getType()), sub_reals, ((RealTuple) component).getCoordinateSystem()); } } newData = new Tuple(new_components, false); } ref.setData(newData); } catch (VisADException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } catch (RemoteException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } }