private void fixAfterDeletion(int parentIndex) { if (isRoot() || parent.isRoot()) return; // No fixing needed if (parent.nrElements < MIN) { // If parent lost it's n/2 element repair it BTreeNode temp = parent; temp.prepareForDeletion(parentIndex); if (temp.parent == null) return; // Root changed if (!temp.parent.isRoot() && temp.parent.nrElements < MIN) { // If need be recurse BTreeNode x = temp.parent.parent; int i = 0; // Find parent's parentIndex for (; i < entries.length; i++) if (x.entries[i].child == temp.parent) break; temp.parent.fixAfterDeletion(i); } } }
/* * This method is called only when stealLeft, stealRight, and mergeLeft could not be called, * the BTreeNode has the minimum number of elements, has a rightSibling, and the * rightSibling has more than the minimum number of elements. If after completion * parent has fewer than the minimum number of elements than the parents entries[0] * slot is left empty in anticipation of a recursive call to stealLeft, stealRight, * mergeLeft, or mergeRight to fix the parent. All of the before-mentioned methods * expect the parent to be in such a condition. */ private void mergeRight(int parentIndex) { BTreeNode p = parent; BTreeNode rs = p.entries[parentIndex + 1].child; if (isLeaf()) { // Don't worry about children entries[nrElements] = new Entry(); entries[nrElements].element = p.entries[parentIndex].element; nrElements++; for (int i = 0, nr = nrElements; i < rs.nrElements; i++, nr++) { entries[nr] = rs.entries[i]; nrElements++; } p.entries[parentIndex].element = p.entries[parentIndex + 1].element; if (p.nrElements == MIN && p != BTreeSet.this.root) { for (int x = parentIndex + 1, y = parentIndex; y >= 0; x--, y--) p.entries[x] = p.entries[y]; p.entries[0] = new Entry(); p.entries[0].child = rs; // So it doesn't think it's a leaf, this child will be deleted in the next // recursive call } else { for (int x = parentIndex + 1, y = parentIndex + 2; y <= p.nrElements; x++, y++) p.entries[x] = p.entries[y]; p.entries[p.nrElements] = null; } p.nrElements--; if (p.isRoot() && p.nrElements == 0) { // It's the root and it's empty BTreeSet.this.root = this; parent = null; } } else { // It's not a leaf entries[nrElements].element = p.entries[parentIndex].element; nrElements++; for (int x = nrElements + 1, y = 0; y <= rs.nrElements; x++, y++) { entries[x] = rs.entries[y]; rs.entries[y].child.parent = this; nrElements++; } nrElements--; p.entries[++parentIndex].child = this; if (p.nrElements == MIN && p != BTreeSet.this.root) { for (int x = parentIndex - 1, y = parentIndex - 2; y >= 0; x--, y--) p.entries[x] = p.entries[y]; p.entries[0] = new Entry(); } else { for (int x = parentIndex - 1, y = parentIndex; y <= p.nrElements; x++, y++) p.entries[x] = p.entries[y]; p.entries[p.nrElements] = null; } p.nrElements--; if (p.isRoot() && p.nrElements == 0) { // It's the root and it's empty BTreeSet.this.root = this; parent = null; } } }
/* * This method is called only when stealLeft and stealRight could not be called, * the BTreeNode has the minimum number of elements, has a leftSibling, and the * leftSibling has more than the minimum number of elements. If after completion * parent has fewer than the minimum number of elements than the parents entries[0] * slot is left empty in anticipation of a recursive call to stealLeft, stealRight, * mergeLeft, or mergeRight to fix the parent. All of the before-mentioned methods * expect the parent to be in such a condition. */ private void mergeLeft(int parentIndex) { BTreeNode p = parent; BTreeNode ls = p.entries[parentIndex - 1].child; if (isLeaf()) { // Don't worry about children int add = childToInsertAt(p.entries[parentIndex - 1].element, true); insertNewElement( p.entries[parentIndex - 1].element, add); // Could have been a successor switch p.entries[parentIndex - 1].element = null; for (int i = nrElements - 1, nr = ls.nrElements; i >= 0; i--) entries[i + nr] = entries[i]; for (int i = ls.nrElements - 1; i >= 0; i--) { entries[i] = ls.entries[i]; nrElements++; } if (p.nrElements == MIN && p != BTreeSet.this.root) { for (int x = parentIndex - 1, y = parentIndex - 2; y >= 0; x--, y--) p.entries[x] = p.entries[y]; p.entries[0] = new Entry(); p.entries[0].child = ls; // So p doesn't think it's a leaf this will be deleted in the next recursive call } else { for (int x = parentIndex - 1, y = parentIndex; y <= p.nrElements; x++, y++) p.entries[x] = p.entries[y]; p.entries[p.nrElements] = null; } p.nrElements--; if (p.isRoot() && p.nrElements == 0) { // It's the root and it's empty BTreeSet.this.root = this; parent = null; } } else { // I'm not a leaf but fixing the tree structure entries[0].element = p.entries[parentIndex - 1].element; entries[0].child = ls.entries[ls.nrElements].child; nrElements++; for (int x = nrElements, nr = ls.nrElements; x >= 0; x--) entries[x + nr] = entries[x]; for (int x = ls.nrElements - 1; x >= 0; x--) { entries[x] = ls.entries[x]; entries[x].child.parent = this; nrElements++; } if (p.nrElements == MIN && p != BTreeSet.this.root) { // Push everything to the right for (int x = parentIndex - 1, y = parentIndex - 2; y >= 0; x++, y++) { System.out.println(x + " " + y); p.entries[x] = p.entries[y]; } p.entries[0] = new Entry(); } else { // Either p.nrElements > MIN or p == BTreeSet.this.root so push everything to the // left for (int x = parentIndex - 1, y = parentIndex; y <= p.nrElements; x++, y++) p.entries[x] = p.entries[y]; p.entries[p.nrElements] = null; } p.nrElements--; if (p.isRoot() && p.nrElements == 0) { // p == BTreeSet.this.root and it's empty BTreeSet.this.root = this; parent = null; } } }