/** Converts a call to an aggregate function to an expression. */ public SqlNode toSql(AggregateCall aggCall) { SqlOperator op = (SqlAggFunction) aggCall.getAggregation(); final List<SqlNode> operands = Expressions.list(); for (int arg : aggCall.getArgList()) { operands.add(field(arg)); } return op.createCall( aggCall.isDistinct() ? SqlSelectKeyword.DISTINCT.symbol(POS) : null, POS, operands.toArray(new SqlNode[operands.size()])); }
private List<AggregateCall> transformAggCalls( RelDataTypeFactory typeFactory, int nGroupCols, List<AggregateCall> origCalls) { List<AggregateCall> newCalls = new ArrayList<AggregateCall>(); int iInput = nGroupCols; for (AggregateCall origCall : origCalls) { if (origCall.isDistinct() || !SUPPORTED_AGGREGATES.containsKey(origCall.getAggregation().getClass())) { return null; } Aggregation aggFun; RelDataType aggType; if (origCall.getAggregation().getName().equals("COUNT")) { aggFun = new SqlSumEmptyIsZeroAggFunction(origCall.getType()); SqlAggFunction af = (SqlAggFunction) aggFun; final AggregateRelBase.AggCallBinding binding = new AggregateRelBase.AggCallBinding( typeFactory, af, Collections.singletonList(origCall.getType()), nGroupCols); // count(any) is always not null, however nullability of sum might // depend on the number of columns in GROUP BY. // Here we use SUM0 since we are sure we will not face nullable // inputs nor we'll face empty set. aggType = af.inferReturnType(binding); } else { aggFun = origCall.getAggregation(); aggType = origCall.getType(); } AggregateCall newCall = new AggregateCall( aggFun, origCall.isDistinct(), Collections.singletonList(iInput), aggType, origCall.getName()); newCalls.add(newCall); ++iInput; } return newCalls; }
/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link AggregateRel}. */ public TrimResult trimFields( AggregateRel aggregate, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { // Fields: // // | sys fields | group fields | agg functions | // // Two kinds of trimming: // // 1. If agg rel has system fields but none of these are used, create an // agg rel with no system fields. // // 2. If aggregate functions are not used, remove them. // // But grouping fields stay, even if they are not used. final RelDataType rowType = aggregate.getRowType(); // Compute which input fields are used. BitSet inputFieldsUsed = new BitSet(); // 1. group fields are always used for (int i : Util.toIter(aggregate.getGroupSet())) { inputFieldsUsed.set(i); } // 2. agg functions for (AggregateCall aggCall : aggregate.getAggCallList()) { for (int i : aggCall.getArgList()) { inputFieldsUsed.set(i); } } // Create input with trimmed columns. final RelNode input = aggregate.getInput(0); final Set<RelDataTypeField> inputExtraFields = Collections.emptySet(); final TrimResult trimResult = trimChild(aggregate, input, inputFieldsUsed, inputExtraFields); final RelNode newInput = trimResult.left; final Mapping inputMapping = trimResult.right; // If the input is unchanged, and we need to project all columns, // there's nothing to do. if (input == newInput && fieldsUsed.equals(Util.bitSetBetween(0, rowType.getFieldCount()))) { return new TrimResult(aggregate, Mappings.createIdentity(rowType.getFieldCount())); } // Which agg calls are used by our consumer? final int groupCount = aggregate.getGroupSet().cardinality(); int j = groupCount; int usedAggCallCount = 0; for (int i = 0; i < aggregate.getAggCallList().size(); i++) { if (fieldsUsed.get(j++)) { ++usedAggCallCount; } } // Offset due to the number of system fields having changed. Mapping mapping = Mappings.create( MappingType.InverseSurjection, rowType.getFieldCount(), groupCount + usedAggCallCount); final BitSet newGroupSet = Mappings.apply(inputMapping, aggregate.getGroupSet()); // Populate mapping of where to find the fields. System and grouping // fields first. for (IntPair pair : inputMapping) { if (pair.source < groupCount) { mapping.set(pair.source, pair.target); } } // Now create new agg calls, and populate mapping for them. final List<AggregateCall> newAggCallList = new ArrayList<AggregateCall>(); j = groupCount; for (AggregateCall aggCall : aggregate.getAggCallList()) { if (fieldsUsed.get(j)) { AggregateCall newAggCall = new AggregateCall( aggCall.getAggregation(), aggCall.isDistinct(), Mappings.apply2(inputMapping, aggCall.getArgList()), aggCall.getType(), aggCall.getName()); if (newAggCall.equals(aggCall)) { newAggCall = aggCall; // immutable -> canonize to save space } mapping.set(j, groupCount + newAggCallList.size()); newAggCallList.add(newAggCall); } ++j; } RelNode newAggregate = new AggregateRel(aggregate.getCluster(), newInput, newGroupSet, newAggCallList); assert newAggregate.getClass() == aggregate.getClass(); return new TrimResult(newAggregate, mapping); }
/** Generates the expression to retrieve the result of this aggregation. */ public Expression implementResult(AggregateCall call, Expression accumulator) { OJAggImplementor aggImplementor = implementorTable.get(call.getAggregation()); return aggImplementor.implementResult(this, accumulator, call); }
public void implementNext(AggregateCall call, JavaRel rel, Expression accumulator) { OJAggImplementor aggImplementor = implementorTable.get(call.getAggregation()); aggImplementor.implementNext(this, rel, accumulator, call); }
public Expression implementStartAndNext(AggregateCall call, JavaRel rel) { OJAggImplementor aggImplementor = implementorTable.get(call.getAggregation()); return aggImplementor.implementStartAndNext(this, rel, call); }