@Override public void payment(BigDecimal amountToPay) { if (isSpecial && amountToPay.longValueExact() >= 50) { System.out.println("You poor, son! Over 50 limit"); return; } System.out.println("creditCard : payment" + amountToPay); if (amountToPay.longValueExact() >= this.amount.longValueExact() && amountToPay.longValueExact() <= this.amount.longValueExact() + this.credLimit.longValueExact()) this.amount = amount.subtract(amountToPay); if (amountToPay.longValueExact() >= this.amount.longValueExact() + this.credLimit.longValueExact()) { this.amount = amount.subtract(amountToPay); } else System.out.println("You poor, son!"); }
@Override public long getDecimalValueAsLong() { BigDecimal d = getDecimal(); if (d != null) { return d.longValueExact(); } return 0; }
private void addMinMaxConstraint( final AbstractParam parameter, final String name, final Class<? extends Annotation> clazz, final BigDecimal value, final JVar argumentVariable) { try { final long boundary = value.longValueExact(); argumentVariable.annotate(clazz).param(DEFAULT_ANNOTATION_PARAMETER, boundary); } catch (final ArithmeticException ae) { LOGGER.info( "Non integer " + name + " constraint ignored for parameter: " + ToStringBuilder.reflectionToString(parameter, SHORT_PREFIX_STYLE)); } }
public LiteralParseNode wholeNumber(String text) { int length = text.length(); // We know it'll fit into long, might still fit into int if (length <= PDataType.LONG_PRECISION - 1) { long l = Long.parseLong(text); if (l <= Integer.MAX_VALUE) { // Fits into int return new LiteralParseNode((int) l); } return new LiteralParseNode(l); } // Might still fit into long BigDecimal d = new BigDecimal(text, PDataType.DEFAULT_MATH_CONTEXT); if (d.compareTo(MAX_LONG) <= 0) { return new LiteralParseNode(d.longValueExact()); } // Doesn't fit into long return new LiteralParseNode(d); }
/** * Returns the long value of this literal. * * @param exact Whether the value has to be exact. If true, and the literal is a fraction (e.g. * 3.14), throws. If false, discards the fractional part of the value. * @return Long value of this literal */ public long longValue(boolean exact) { switch (typeName) { case DECIMAL: case DOUBLE: BigDecimal bd = (BigDecimal) value; if (exact) { try { return bd.longValueExact(); } catch (ArithmeticException e) { throw SqlUtil.newContextException( getParserPosition(), RESOURCE.numberLiteralOutOfRange(bd.toString())); } } else { return bd.longValue(); } default: throw Util.unexpected(typeName); } }
/** * Converts a {@link BigDecimal} value into the requested return type if possible. * * @param value the value * @param returnType the class of the returned value; it must be one of {@link BigDecimal}, {@link * Double}, {@link Float}, {@link BigInteger}, {@link Long}, {@link Integer}, {@link Short}, * or {@link Byte} * @return the converted value * @throws IllegalArgumentException if the conversion is not possible or would lead to loss of * data * @throws ClassCastException if the return type is not allowed */ protected static <T> T convertDecimal(final BigDecimal value, final Class<T> returnType) throws IllegalArgumentException, ClassCastException { if (returnType.isAssignableFrom(BigDecimal.class)) { return returnType.cast(value); } else if (returnType.isAssignableFrom(Double.class)) { final double doubleValue = value.doubleValue(); if (BigDecimal.valueOf(doubleValue).compareTo(value) == 0) { return returnType.cast(doubleValue); } else { throw new IllegalArgumentException(); } } else if (returnType.isAssignableFrom(Float.class)) { final Float floatValue = value.floatValue(); if (BigDecimal.valueOf(floatValue).compareTo(value) == 0) { return returnType.cast(floatValue); } else { throw new IllegalArgumentException(); } } else { try { if (returnType.isAssignableFrom(BigInteger.class)) { return returnType.cast(value.toBigIntegerExact()); } else if (returnType.isAssignableFrom(Long.class)) { return returnType.cast(value.longValueExact()); } else if (returnType.isAssignableFrom(Integer.class)) { return returnType.cast(value.intValueExact()); } else if (returnType.isAssignableFrom(Short.class)) { return returnType.cast(value.shortValueExact()); } else if (returnType.isAssignableFrom(Byte.class)) { return returnType.cast(value.byteValueExact()); } else { throw new ClassCastException("unsupported return type " + returnType.getSimpleName()); } } catch (final ArithmeticException e) { throw new IllegalArgumentException(e); } } }
/** * Check whether value represents a whole number * * @param value * @return */ private static boolean isInt(Number value) { if (value instanceof Long || value instanceof Integer || value instanceof Short || value instanceof Byte || value instanceof BigInteger) { return true; } final BigDecimal bigDecimalValue; if (value instanceof Double || value instanceof Float) { bigDecimalValue = new BigDecimal(value.toString()); } else if (value instanceof BigDecimal) { bigDecimalValue = (BigDecimal) value; } else { throw new IllegalArgumentException("Unexpected dataType: " + value.getClass().getName()); } try { bigDecimalValue.longValueExact(); return true; } catch (ArithmeticException e) { return false; } }
public static Comparable<?> round(Comparable<?> param, Calendar cal) throws ParseException { if (param == null) { return null; } if (param instanceof String) { param = parse((String) param); } if (param instanceof BigDecimal) { // BigInteger is not supported BigDecimal b = ((BigDecimal) param).setScale(0, BigDecimal.ROUND_HALF_UP); try { return b.longValueExact(); } catch (ArithmeticException e) { } return b; } if (param instanceof Double || param instanceof Float) { return Math.round(((Number) param).doubleValue()); } if (param instanceof Number) { // Long, Integer, Short, Byte return param; } if (param instanceof Timestamp) { Timestamp ts = (Timestamp) param; cal.setTimeInMillis(ts.getTime()); int year = cal.get(YEAR); int month = cal.get(MONTH); int date = cal.get(DATE); int hour = cal.get(HOUR_OF_DAY); cal.clear(); if (hour > 11) { date++; } cal.set(year, month, date); return new Timestamp(cal.getTimeInMillis()); } throw new ParseException(WRONG_TYPE + " round(" + param.getClass() + ")"); }
/** * Type converts values to other classes. For example an Integer can be converted to a Long. * * @param <T> Data Type. * @param value The value to be converted. * @param to The class to be converted to. Must be one of the Java types corresponding to the * DataTypes. * @return The converted value. * @throws TypeMismatchException Thrown desired class is incompatible with the source class. * @throws OverflowException Thrown only on narrowing value conversions, e.g from a BigInteger to * an Integer. */ @Nullable public static <T> T convert(Object value, Class<?> to) throws TypeMismatchException, OverflowException { final Object result; if (value == null || value.getClass() == to) { result = value; } else { final Class<?> from = value.getClass(); try { if (from == Integer.class) { // Integer -> ... if (to == Long.class) { result = new Long(((Number) value).longValue()); } else if (to == BigInteger.class) { result = BigInteger.valueOf(((Number) value).intValue()); } else if (to == Float.class) { result = new Float(((Number) value).floatValue()); } else if (to == Double.class) { result = new Double(((Number) value).doubleValue()); } else if (to == BigDecimal.class) { // Use intValue() to avoid precision errors result = new BigDecimal(((Number) value).intValue()); } else { throw new TypeMismatchException(value.getClass(), to); } } else if (from == Long.class) { // Long -> ... if (to == Integer.class) { final long l = ((Long) value).longValue(); if (l < Integer.MIN_VALUE || l > Integer.MAX_VALUE) { throw new OverflowException((Number) value, to); } result = new Integer((int) l); } else if (to == BigInteger.class) { result = BigInteger.valueOf(((Number) value).longValue()); } else if (to == Float.class) { result = new Float(((Number) value).floatValue()); } else if (to == Double.class) { result = new Double(((Number) value).doubleValue()); } else if (to == BigDecimal.class) { // Use longValue() to avoid precision errors result = new BigDecimal(((Number) value).longValue()); } else { throw new TypeMismatchException(value.getClass(), to); } } else if (from == BigInteger.class) { // BigInteger -> ... final BigInteger bi = (BigInteger) value; if (to == Integer.class) { result = new Integer(bi.intValueExact()); } else if (to == Long.class) { result = new Long(bi.longValueExact()); } else if (to == Float.class) { final float f1 = bi.floatValue(); if (f1 == Float.NEGATIVE_INFINITY || f1 == Float.POSITIVE_INFINITY) { throw new OverflowException(bi, to); } result = new Float(f1); } else if (to == Double.class) { final double d = bi.doubleValue(); if (d == Double.NEGATIVE_INFINITY || d == Double.POSITIVE_INFINITY) { throw new OverflowException(bi, to); } result = new Double(d); } else if (to == BigDecimal.class) { result = new BigDecimal(bi); } else { throw new TypeMismatchException(value.getClass(), to); } } else if (from == Float.class) { // Float -> ... final float fl = ((Float) value).floatValue(); if (to == Integer.class) { if (fl < Integer.MIN_VALUE || fl > Integer.MAX_VALUE | fl % 1 > 0) { throw new OverflowException((Number) value, to); } result = new Integer((int) fl); } else if (to == Long.class) { if (fl < Long.MIN_VALUE || fl > Long.MAX_VALUE | fl % 1 > 0) { throw new OverflowException((Number) value, to); } result = new Long((long) fl); } else if (to == BigInteger.class) { if (fl % 1 > 0) { throw new OverflowException((Number) value, to); } final BigDecimal bd = BigDecimal.valueOf(fl); result = bd.toBigInteger(); } else if (to == Double.class) { result = new Double(((Number) value).doubleValue()); } else if (to == BigDecimal.class) { result = BigDecimal.valueOf(fl); } else { throw new TypeMismatchException(value.getClass(), to); } } else if (from == Double.class) { // Double -> ... final double d = ((Double) value).doubleValue(); if (to == Integer.class) { if (d < Integer.MIN_VALUE || d > Integer.MAX_VALUE || d % 1 > 0) { throw new OverflowException((Number) value, to); } result = new Integer((int) d); } else if (to == Long.class) { // OK if (d < Long.MIN_VALUE || d > Long.MAX_VALUE || d % 1 > 0) { throw new OverflowException((Number) value, to); } result = new Long((int) d); } else if (to == BigInteger.class) { // OK if (d % 1 > 0) { throw new OverflowException((Number) value, to); } final BigDecimal bd = BigDecimal.valueOf(d); result = bd.toBigInteger(); } else if (to == Float.class) { // OK if (d < -Float.MAX_VALUE || d > Float.MAX_VALUE) { throw new OverflowException((Number) value, to); } result = new Float((float) d); } else if (to == BigDecimal.class) { // OK result = BigDecimal.valueOf(d); } else { throw new TypeMismatchException(value.getClass(), to); } } else if (from == BigDecimal.class) { // BigDecimal -> ... final BigDecimal bd = (BigDecimal) value; if (to == Integer.class) { // OK result = new Integer(bd.intValueExact()); } else if (to == Long.class) { // OK result = new Long(bd.longValueExact()); } else if (to == BigInteger.class) { // OK // BigDecimal modulus final BigDecimal remainder = bd.remainder(BigDecimal.ONE); if (!remainder.equals(BigDecimal.ZERO)) { throw new OverflowException(bd, to); } result = bd.toBigInteger(); } else if (to == Float.class) { // OK if (bd.compareTo(BigDecimal_MIN_FLOAT) < 0 || bd.compareTo(BigDecimal_MAX_FLOAT) > 0) { throw new OverflowException(bd, to); } result = new Float(bd.floatValue()); } else if (to == Double.class) { // OK if (bd.compareTo(BigDecimal_MIN_DOUBLE) < 0 || bd.compareTo(BigDecimal_MAX_DOUBLE) > 0) { throw new OverflowException(bd, to); } result = new Double(bd.doubleValue()); } else { throw new TypeMismatchException(value.getClass(), to); } } else { throw new UnexpectedException("convert: " + from.getName()); } } catch (final ArithmeticException e) { // Thrown by intValueExact() etc. throw new OverflowException((Number) value, to); } } @SuppressWarnings("unchecked") final T t = (T) result; return t; }
public static Object parseType(ResultSet result, Integer i, int type) throws SQLException, IOException, ParseException { logger.trace("i={} type={}", i, type); switch (type) { /** * The JDBC types CHAR, VARCHAR, and LONGVARCHAR are closely related. CHAR represents a * small, fixed-length character string, VARCHAR represents a small, variable-length * character string, and LONGVARCHAR represents a large, variable-length character string. */ case Types.CHAR: case Types.VARCHAR: case Types.LONGVARCHAR: { return result.getString(i); } case Types.NCHAR: case Types.NVARCHAR: case Types.LONGNVARCHAR: { return result.getNString(i); } /** * The JDBC types BINARY, VARBINARY, and LONGVARBINARY are closely related. BINARY * represents a small, fixed-length binary value, VARBINARY represents a small, * variable-length binary value, and LONGVARBINARY represents a large, variable-length * binary value */ case Types.BINARY: case Types.VARBINARY: case Types.LONGVARBINARY: { byte[] b = result.getBytes(i); return b; } /** * The JDBC type ARRAY represents the SQL3 type ARRAY. * * <p>An ARRAY value is mapped to an instance of the Array interface in the Java programming * language. If a driver follows the standard implementation, an Array object logically * points to an ARRAY value on the server rather than containing the elements of the ARRAY * object, which can greatly increase efficiency. The Array interface contains methods for * materializing the elements of the ARRAY object on the client in the form of either an * array or a ResultSet object. */ case Types.ARRAY: { Array arr = result.getArray(i); return arr == null ? null : arr.getArray(); } /** * The JDBC type BIGINT represents a 64-bit signed integer value between * -9223372036854775808 and 9223372036854775807. * * <p>The corresponding SQL type BIGINT is a nonstandard extension to SQL. In practice the * SQL BIGINT type is not yet currently implemented by any of the major databases, and we * recommend that its use be avoided in code that is intended to be portable. * * <p>The recommended Java mapping for the BIGINT type is as a Java long. */ case Types.BIGINT: { Object o = result.getLong(i); return result.wasNull() ? null : o; } /** * The JDBC type BIT represents a single bit value that can be zero or one. * * <p>SQL-92 defines an SQL BIT type. However, unlike the JDBC BIT type, this SQL-92 BIT * type can be used as a parameterized type to define a fixed-length binary string. * Fortunately, SQL-92 also permits the use of the simple non-parameterized BIT type to * represent a single binary digit, and this usage corresponds to the JDBC BIT type. * Unfortunately, the SQL-92 BIT type is only required in "full" SQL-92 and is currently * supported by only a subset of the major databases. Portable code may therefore prefer to * use the JDBC SMALLINT type, which is widely supported. */ case Types.BIT: { try { Object o = result.getInt(i); return result.wasNull() ? null : o; } catch (Exception e) { String exceptionClassName = e.getClass().getName(); // postgresql can not handle boolean, it will throw PSQLException, something like "Bad // value for type int : t" if ("org.postgresql.util.PSQLException".equals(exceptionClassName)) { return "t".equals(result.getString(i)); } throw new IOException(e); } } /** * The JDBC type BOOLEAN, which is new in the JDBC 3.0 API, maps to a boolean in the Java * programming language. It provides a representation of true and false, and therefore is a * better match than the JDBC type BIT, which is either 1 or 0. */ case Types.BOOLEAN: { return result.getBoolean(i); } /** * The JDBC type BLOB represents an SQL3 BLOB (Binary Large Object). * * <p>A JDBC BLOB value is mapped to an instance of the Blob interface in the Java * programming language. If a driver follows the standard implementation, a Blob object * logically points to the BLOB value on the server rather than containing its binary data, * greatly improving efficiency. The Blob interface provides methods for materializing the * BLOB data on the client when that is desired. */ case Types.BLOB: { Blob blob = result.getBlob(i); if (blob != null) { long n = blob.length(); if (n > Integer.MAX_VALUE) { throw new IOException("can't process blob larger than Integer.MAX_VALUE"); } byte[] tab = blob.getBytes(1, (int) n); blob.free(); return tab; } break; } /** * The JDBC type CLOB represents the SQL3 type CLOB (Character Large Object). * * <p>A JDBC CLOB value is mapped to an instance of the Clob interface in the Java * programming language. If a driver follows the standard implementation, a Clob object * logically points to the CLOB value on the server rather than containing its character * data, greatly improving efficiency. Two of the methods on the Clob interface materialize * the data of a CLOB object on the client. */ case Types.CLOB: { Clob clob = result.getClob(i); if (clob != null) { long n = clob.length(); if (n > Integer.MAX_VALUE) { throw new IOException("can't process clob larger than Integer.MAX_VALUE"); } String str = clob.getSubString(1, (int) n); clob.free(); return str; } break; } case Types.NCLOB: { NClob nclob = result.getNClob(i); if (nclob != null) { long n = nclob.length(); if (n > Integer.MAX_VALUE) { throw new IOException("can't process nclob larger than Integer.MAX_VALUE"); } String str = nclob.getSubString(1, (int) n); nclob.free(); return str; } break; } /** * The JDBC type DATALINK, new in the JDBC 3.0 API, is a column value that references a file * that is outside of a data source but is managed by the data source. It maps to the Java * type java.net.URL and provides a way to manage external files. For instance, if the data * source is a DBMS, the concurrency controls it enforces on its own data can be applied to * the external file as well. * * <p>A DATALINK value is retrieved from a ResultSet object with the ResultSet methods * getURL or getObject. If the Java platform does not support the type of URL returned by * getURL or getObject, a DATALINK value can be retrieved as a String object with the method * getString. * * <p>java.net.URL values are stored in a database using the method setURL. If the Java * platform does not support the type of URL being set, the method setString can be used * instead. */ case Types.DATALINK: { return result.getURL(i); } /** * The JDBC DATE type represents a date consisting of day, month, and year. The * corresponding SQL DATE type is defined in SQL-92, but it is implemented by only a subset * of the major databases. Some databases offer alternative SQL types that support similar * semantics. */ case Types.DATE: { try { Date d = result.getDate(i, calendar); return d != null ? formatDate(d.getTime()) : null; } catch (SQLException e) { return null; } } case Types.TIME: { try { Time t = result.getTime(i, calendar); return t != null ? formatDate(t.getTime()) : null; } catch (SQLException e) { return null; } } case Types.TIMESTAMP: { try { Timestamp t = result.getTimestamp(i, calendar); return t != null ? formatDate(t.getTime()) : null; } catch (SQLException e) { // java.sql.SQLException: Cannot convert value '0000-00-00 00:00:00' from column ... to // TIMESTAMP. return null; } } /** * The JDBC types DECIMAL and NUMERIC are very similar. They both represent fixed-precision * decimal values. * * <p>The corresponding SQL types DECIMAL and NUMERIC are defined in SQL-92 and are very * widely implemented. These SQL types take precision and scale parameters. The precision is * the total number of decimal digits supported, and the scale is the number of decimal * digits after the decimal point. For most DBMSs, the scale is less than or equal to the * precision. So for example, the value "12.345" has a precision of 5 and a scale of 3, and * the value ".11" has a precision of 2 and a scale of 2. JDBC requires that all DECIMAL and * NUMERIC types support both a precision and a scale of at least 15. * * <p>The sole distinction between DECIMAL and NUMERIC is that the SQL-92 specification * requires that NUMERIC types be represented with exactly the specified precision, whereas * for DECIMAL types, it allows an implementation to add additional precision beyond that * specified when the type was created. Thus a column created with type NUMERIC(12,4) will * always be represented with exactly 12 digits, whereas a column created with type * DECIMAL(12,4) might be represented by some larger number of digits. * * <p>The recommended Java mapping for the DECIMAL and NUMERIC types is * java.math.BigDecimal. The java.math.BigDecimal type provides math operations to allow * BigDecimal types to be added, subtracted, multiplied, and divided with other BigDecimal * types, with integer types, and with floating point types. * * <p>The method recommended for retrieving DECIMAL and NUMERIC values is * ResultSet.getBigDecimal. JDBC also allows access to these SQL types as simple Strings or * arrays of char. Thus, Java programmers can use getString to receive a DECIMAL or NUMERIC * result. However, this makes the common case where DECIMAL or NUMERIC are used for * currency values rather awkward, since it means that application writers have to perform * math on strings. It is also possible to retrieve these SQL types as any of the Java * numeric types. */ case Types.DECIMAL: case Types.NUMERIC: { BigDecimal bd = null; try { // getBigDecimal() should get obsolete. Most seem to use getString/getObject anyway... bd = result.getBigDecimal(i); } catch (NullPointerException e) { // But is it true? JDBC NPE exists since 13 years? // http://forums.codeguru.com/archive/index.php/t-32443.html // Null values are driving us nuts in JDBC: // http://stackoverflow.com/questions/2777214/when-accessing-resultsets-in-jdbc-is-there-an-elegant-way-to-distinguish-betwee } if (bd == null || result.wasNull()) { return null; } int scale = 2; if (scale >= 0) { bd = bd.setScale(scale, BigDecimal.ROUND_UP); try { long l = bd.longValueExact(); if (Long.toString(l).equals(result.getString(i))) { // convert to long if possible return l; } else { // convert to double (with precision loss) return bd.doubleValue(); } } catch (ArithmeticException e) { return bd.doubleValue(); } } else { return bd.toPlainString(); } } /** * The JDBC type DOUBLE represents a "double precision" floating point number that supports * 15 digits of mantissa. * * <p>The corresponding SQL type is DOUBLE PRECISION, which is defined in SQL-92 and is * widely supported by the major databases. The SQL-92 standard leaves the precision of * DOUBLE PRECISION up to the implementation, but in practice all the major databases * supporting DOUBLE PRECISION support a mantissa precision of at least 15 digits. * * <p>The recommended Java mapping for the DOUBLE type is as a Java double. */ case Types.DOUBLE: { String s = result.getString(i); if (result.wasNull() || s == null) { return null; } NumberFormat format = NumberFormat.getInstance(locale); Number number = format.parse(s); return number.doubleValue(); } /** * The JDBC type FLOAT is basically equivalent to the JDBC type DOUBLE. We provided both * FLOAT and DOUBLE in a possibly misguided attempt at consistency with previous database * APIs. FLOAT represents a "double precision" floating point number that supports 15 digits * of mantissa. * * <p>The corresponding SQL type FLOAT is defined in SQL-92. The SQL-92 standard leaves the * precision of FLOAT up to the implementation, but in practice all the major databases * supporting FLOAT support a mantissa precision of at least 15 digits. * * <p>The recommended Java mapping for the FLOAT type is as a Java double. However, because * of the potential confusion between the double precision SQL FLOAT and the single * precision Java float, we recommend that JDBC programmers should normally use the JDBC * DOUBLE type in preference to FLOAT. */ case Types.FLOAT: { String s = result.getString(i); if (result.wasNull() || s == null) { return null; } NumberFormat format = NumberFormat.getInstance(locale); Number number = format.parse(s); return number.doubleValue(); } /** * The JDBC type JAVA_OBJECT, added in the JDBC 2.0 core API, makes it easier to use objects * in the Java programming language as values in a database. JAVA_OBJECT is simply a type * code for an instance of a class defined in the Java programming language that is stored * as a database object. The type JAVA_OBJECT is used by a database whose type system has * been extended so that it can store Java objects directly. The JAVA_OBJECT value may be * stored as a serialized Java object, or it may be stored in some vendor-specific format. * * <p>The type JAVA_OBJECT is one of the possible values for the column DATA_TYPE in the * ResultSet objects returned by various DatabaseMetaData methods, including getTypeInfo, * getColumns, and getUDTs. The method getUDTs, part of the new JDBC 2.0 core API, will * return information about the Java objects contained in a particular schema when it is * given the appropriate parameters. Having this information available facilitates using a * Java class as a database type. */ case Types.OTHER: case Types.JAVA_OBJECT: { return result.getObject(i); } /** * The JDBC type REAL represents a "single precision" floating point number that supports * seven digits of mantissa. * * <p>The corresponding SQL type REAL is defined in SQL-92 and is widely, though not * universally, supported by the major databases. The SQL-92 standard leaves the precision * of REAL up to the implementation, but in practice all the major databases supporting REAL * support a mantissa precision of at least seven digits. * * <p>The recommended Java mapping for the REAL type is as a Java float. */ case Types.REAL: { String s = result.getString(i); if (result.wasNull() || s == null) { return null; } NumberFormat format = NumberFormat.getInstance(locale); Number number = format.parse(s); return number.doubleValue(); } /** * The JDBC type TINYINT represents an 8-bit integer value between 0 and 255 that may be * signed or unsigned. * * <p>The corresponding SQL type, TINYINT, is currently supported by only a subset of the * major databases. Portable code may therefore prefer to use the JDBC SMALLINT type, which * is widely supported. * * <p>The recommended Java mapping for the JDBC TINYINT type is as either a Java byte or a * Java short. The 8-bit Java byte type represents a signed value from -128 to 127, so it * may not always be appropriate for larger TINYINT values, whereas the 16-bit Java short * will always be able to hold all TINYINT values. */ /** * The JDBC type SMALLINT represents a 16-bit signed integer value between -32768 and 32767. * * <p>The corresponding SQL type, SMALLINT, is defined in SQL-92 and is supported by all the * major databases. The SQL-92 standard leaves the precision of SMALLINT up to the * implementation, but in practice, all the major databases support at least 16 bits. * * <p>The recommended Java mapping for the JDBC SMALLINT type is as a Java short. */ /** * The JDBC type INTEGER represents a 32-bit signed integer value ranging between * -2147483648 and 2147483647. * * <p>The corresponding SQL type, INTEGER, is defined in SQL-92 and is widely supported by * all the major databases. The SQL-92 standard leaves the precision of INTEGER up to the * implementation, but in practice all the major databases support at least 32 bits. * * <p>The recommended Java mapping for the INTEGER type is as a Java int. */ case Types.TINYINT: case Types.SMALLINT: case Types.INTEGER: { try { Integer integer = result.getInt(i); return result.wasNull() ? null : integer; } catch (SQLDataException e) { Long l = result.getLong(i); return result.wasNull() ? null : l; } } case Types.SQLXML: { SQLXML xml = result.getSQLXML(i); return xml != null ? xml.getString() : null; } case Types.NULL: { return null; } /** * The JDBC type DISTINCT field (Types class)>DISTINCT represents the SQL3 type DISTINCT. * * <p>The standard mapping for a DISTINCT type is to the Java type to which the base type of * a DISTINCT object would be mapped. For example, a DISTINCT type based on a CHAR would be * mapped to a String object, and a DISTINCT type based on an SQL INTEGER would be mapped to * an int. * * <p>The DISTINCT type may optionally have a custom mapping to a class in the Java * programming language. A custom mapping consists of a class that implements the interface * SQLData and an entry in a java.util.Map object. */ case Types.DISTINCT: { logger.warn("JDBC type not implemented: {}", type); return null; } /** * The JDBC type STRUCT represents the SQL99 structured type. An SQL structured type, which * is defined by a user with a CREATE TYPE statement, consists of one or more attributes. * These attributes may be any SQL data type, built-in or user-defined. * * <p>The standard mapping for the SQL type STRUCT is to a Struct object in the Java * programming language. A Struct object contains a value for each attribute of the STRUCT * value it represents. * * <p>A STRUCT value may optionally be custom mapped to a class in the Java programming * language, and each attribute in the STRUCT may be mapped to a field in the class. A * custom mapping consists of a class that implements the interface SQLData and an entry in * a java.util.Map object. */ case Types.STRUCT: { logger.warn("JDBC type not implemented: {}", type); return null; } case Types.REF: { logger.warn("JDBC type not implemented: {}", type); return null; } case Types.ROWID: { logger.warn("JDBC type not implemented: {}", type); return null; } default: { logger.warn("unknown JDBC type ignored: {}", type); return null; } } return null; }