public static Vector<Double> trainNode( String filename, int outputRepresentation, String inputRepresentation, int filter, double learningRate, int epochs) { Vector<Double> node = null; // initialize node to null double error = 1; // initialize error double output = 0; // initialize output Vector<Double> trainError = new Vector<Double>(); double meansq = 0; String binTarget = ""; String binaryRep = ""; int target; openFile(filename); // open our file for training firstRead = true; int targetCounter = 0; while ((target = readFileIntoInputVector(inputRepresentation)) != -2) { // while we have not reached out end of file error if (outputRepresentation == 4) { binTarget = Integer.toBinaryString(target); // convert target to binary int[] targetArray = new int[4]; // array to hold binary ints for (int h = 0; h < targetArray.length; h++) { // add binary elements to int array try { targetArray[targetArray.length - h - 1] = Character.digit(binTarget.charAt(binTarget.length() - h - 1), 10); } catch (IndexOutOfBoundsException e) { // if there is empty spaces, fill with zeros targetArray[targetArray.length - h - 1] = 0; } } target = targetArray[filter]; binTarget = ""; for (int i = 0; i < targetArray.length; i++) { binTarget = binTarget + targetArray[i]; } } if ((filter == target && outputRepresentation == 10) || outputRepresentation != 10) { if (node == null) { node = new Vector<Double>(); for (int i = 0; i < inputs.size(); i++) { // for each input double randWeight = 1; // initialize random weight while (randWeight > 0.15) // while out random isn't less than 0.15 randWeight = random.nextDouble(); // get a new random double if (random.nextBoolean()) randWeight = randWeight * -1; // randomly set to negative node.addElement(new Double(randWeight)); // store random weight } } targetCounter++; // train for number of epochs for (int i = 0; i < epochs; i++) { // for each epoch double weightedSum = 0; // set/reset the weighted sum to 0 for (int j = 0; j < inputs.size(); j++) { weightedSum += (inputs.elementAt(j) * node.elementAt(j)); // calculate weighted sum } output = activation(weightedSum); // retrieve output if (outputRepresentation == 1 || outputRepresentation == 10) output = output * 10; else if (outputRepresentation == 4) { // each node must have a whole number if (output > 0.5) output = 1; else output = 0; } error = target - output; // calculate error if (i == epochs - 1) { if (outputRepresentation == 4) { if (filter == 0) { allOutputs.ensureCapacity(targetCounter); allOutputs.add(Integer.toString((int) output)); } else { allOutputs.set( targetCounter - 1, allOutputs.get(targetCounter - 1) + ((int) output)); } } trainError.add(error); if (Math.round(error) == 0 && outputRepresentation != 4) { trainCountCorrect++; } else if (outputRepresentation == 4 && filter == 3) { if (allOutputs.get(targetCounter - 1).equals(binTarget)) { trainCountCorrect++; } } } for (int k = 0; k < inputs.size(); k++) { // for each input double derivative = (1.64872 * Math.exp(weightedSum)) / (Math.pow(1.64872 + Math.exp(weightedSum), 2)); // calculate new weights double newWeight = node.elementAt(k) + (learningRate * inputs.elementAt(k) * error * derivative); // cont. node.setElementAt(newWeight, k); // update weights } } } inputs.clear(); } errorVect.addElement((Vector<Double>) trainError.clone()); trainError.clear(); if (outputRepresentation == 4 && filter == 3) System.out.println( "Training Percent: " + (100 * (double) trainCountCorrect / (double) targetCounter)); if (outputRepresentation == 10 && filter == 9) System.out.println( "Training Percent: " + (10 * (double) trainCountCorrect / (double) targetCounter)); if (outputRepresentation == 1) System.out.println( "Training Percent: " + (100 * (double) trainCountCorrect / (double) targetCounter)); closeFile(); return node; // node is now trained for an epoch }