public void setXY(double x, double y) { // not validated // x and y between -1 and 1 double sigmoidSteepness, sigmoidZero, baseLength; double sensitivity = 1.1; // evaluated with set to 1.1: a sensitivity of 1 means the complete space of the button // is used. 2 means only the middle part is used, making it more sensitive and more // easy to get to extreme arousal (from a CHI perspective). if (!down) { p = x * sensitivity; d = y * sensitivity; baseLength = Math.max(Math.abs(p), Math.abs(d)); // MAX (P, D) base // baseLength=Math.sqrt(Math.pow(p,2)+Math.pow(d,2))/Math.sqrt(2.0); //euclid P,D base // now do the mapping to arousal. // Arousal is controlled simple by using a Sigmoid function based on length of PD vector sigmoidSteepness = 11; sigmoidZero = 8; a = 2 / (1 + Math.exp(-(sigmoidSteepness * baseLength - sigmoidZero))) - 1; a_base = a; // Arousal is controlled simply by using a quadratic function that has 0,0,0 as middle point, // then drops to -1, then to 1 based MIN (P,D) length (mimics better original linear) // sigmoidSteepness=6; // sigmoidZero=0.35; // a=sigmoidSteepness*Math.pow(Math.max(Math.abs(p),Math.abs(d))-sigmoidZero, 2)-1; p = (p > 1 ? 1 : (p < -1 ? -1 : p)); d = (d > 1 ? 1 : (d < -1 ? -1 : d)); a = (a > 1 ? 1 : (a < -1 ? -1 : a)); } else { double tmp_p, tmp_d; tmp_p = x * sensitivity; tmp_d = y * sensitivity; baseLength = Math.max(Math.abs(tmp_p), Math.abs(tmp_d)); // MAX (P, D) base // baseLength=Math.sqrt(Math.pow(p,2)+Math.pow(d,2))/Math.sqrt(2.0); //euclid P,D base // now do the mapping to arousal. // Arousal is controlled simple by using a Sigmoid function based on length of PD vector sigmoidSteepness = 11; sigmoidZero = 8; // a=a_base-(d-tmp_d)+2/(1+Math.exp(-(sigmoidSteepness*baseLength-sigmoidZero)))-1; a = tmp_d; // Arousal is controlled simply by using a quadratic function that has 0,0,0 as middle point, // then drops to -1, then to 1 based MIN (P,D) length (mimics better original linear) // sigmoidSteepness=6; // sigmoidZero=0.35; // a=sigmoidSteepness*Math.pow(Math.max(Math.abs(p),Math.abs(d))-sigmoidZero, 2)-1; // p=(p>1?1:(p<-1?-1:p)); // d=(d>1?1:(d<-1?-1:d)); a = (a > 1 ? 1 : (a < -1 ? -1 : a)); } }
protected void plotScatterDiagram() { // plot sample as one dimensional scatter plot and Gaussian double xmax = 5.; double xmin = -5.; DatanGraphics.openWorkstation(getClass().getName(), "E3Min_1.ps"); DatanGraphics.setFormat(0., 0.); DatanGraphics.setWindowInComputingCoordinates(xmin, xmax, 0., .5); DatanGraphics.setViewportInWorldCoordinates(-.15, .9, .16, .86); DatanGraphics.setWindowInWorldCoordinates(-.414, 1., 0., 1.); DatanGraphics.setBigClippingWindow(); DatanGraphics.chooseColor(2); DatanGraphics.drawFrame(); DatanGraphics.drawScaleX("y"); DatanGraphics.drawScaleY("f(y)"); DatanGraphics.drawBoundary(); double xpl[] = new double[2]; double ypl[] = new double[2]; // plot scatter diagram DatanGraphics.chooseColor(1); for (int i = 0; i < y.length; i++) { xpl[0] = y[i]; xpl[1] = y[i]; ypl[0] = 0.; ypl[0] = .1; DatanGraphics.drawPolyline(xpl, ypl); } // draw Gaussian corresponding to solution int npl = 100; xpl = new double[npl]; ypl = new double[npl]; double fact = 1. / (Math.sqrt(2. * Math.PI) * x.getElement(1)); double dpl = (xmax - xmin) / (double) (npl - 1); for (int i = 0; i < npl; i++) { xpl[i] = xmin + (double) i * dpl; ypl[i] = fact * Math.exp(-.5 * Math.pow((xpl[i] - x.getElement(0)) / x.getElement(1), 2.)); } DatanGraphics.chooseColor(5); DatanGraphics.drawPolyline(xpl, ypl); // draw caption String sn = "N = " + nny; numForm.setMaximumFractionDigits(3); numForm.setMinimumFractionDigits(3); String sx1 = ", x_1# = " + numForm.format(x.getElement(0)); String sx2 = ", x_2# = " + numForm.format(x.getElement(1)); String sdx1 = ", &D@x_1# = " + numForm.format(Math.sqrt(cx.getElement(0, 0))); String sdx2 = ", &D@x_2# = " + numForm.format(Math.sqrt(cx.getElement(1, 1))); caption = sn + sx1 + sx2 + sdx1 + sdx2; DatanGraphics.setBigClippingWindow(); DatanGraphics.chooseColor(2); DatanGraphics.drawCaption(1., caption); DatanGraphics.closeWorkstation(); }
public double evaluate_1(double x) { return (2 * x / x * x + 1) - 0.4 * Math.exp(0.4 * x) * Math.cos(Math.PI * x) + Math.PI * Math.exp(0.4 * x) * Math.sin(Math.PI * x); }
protected void compute() { n = (int) ni[0].parseInput(); t0 = ni[1].parseInput(); deltat = ni[2].parseInput(); x1 = ni[3].parseInput(); x2 = ni[4].parseInput(); sigma = ni[5].parseInput(); // generate data points t = new DatanVector(n); y = new DatanVector(n); dy = new DatanVector(n); rand = DatanRandom.standardNormal(n); for (int i = 0; i < n; i++) { t.setElement(i, t0 + (double) i * deltat); y.setElement(i, x1 * Math.pow(t.getElement(i), x2) + sigma * rand[i]); dy.setElement(i, sigma); } // find 1st approximation of unknowns by method of log-log plot tlog = new double[n]; ylog = new double[n]; dellog = new double[n]; int npos = 0; for (int i = 0; i < n; i++) { if (t.getElement(i) > 0. && y.getElement(i) > 0.) { tlog[npos] = Math.log(t.getElement(i)); ylog[npos] = Math.log(y.getElement(i)); dellog[npos] = 1.; npos++; } } DatanVector vtlog = new DatanVector(npos); DatanVector vylog = new DatanVector(npos); DatanVector vdellog = new DatanVector(npos); for (int j = 0; j < npos; j++) { vtlog.setElement(j, tlog[j]); vylog.setElement(j, ylog[j]); vdellog.setElement(j, dellog[j]); } LsqPol lp = new LsqPol(vtlog, vylog, vdellog, 2); x = lp.getResult(); x.setElement(0, Math.exp(x.getElement(0))); df.writeLine(" x = " + x.toString()); // perform fit int[] list = {1, 1}; powerlaw = new Powerlaw(); LsqNon ln = new LsqNon(t, y, dy, x, list, powerlaw); x = ln.getResult(); x1 = x.getElement(0); x2 = x.getElement(1); cov = ln.getCovarianceMatrix(); delx1 = Math.sqrt(cov.getElement(0, 0)); delx2 = Math.sqrt(cov.getElement(1, 1)); rho = cov.getElement(1, 0) / (delx1 * delx2); m = ln.getChiSquare(); p = 1. - StatFunct.cumulativeChiSquared(m, n - 1); // curve of fitted exponential xpl = new double[1001]; ypl = new double[1001]; dpl = (double) (n - 1) * deltat / 1000.; for (int i = 0; i < 1001; i++) { xpl[i] = t0 + (double) i * dpl; ypl[i] = x1 * Math.pow(xpl[i], x2); } // prepare data points for plotting datx = new double[n]; daty = new double[n]; datsx = new double[n]; datsy = new double[n]; datrho = new double[n]; for (int i = 0; i < n; i++) { datx[i] = t.getElement(i); daty[i] = y.getElement(i); datsx[i] = 0.; datsy[i] = dy.getElement(i); datrho[i] = 0.; } // display data and fitted curve caption = "x_1#=" + String.format(Locale.US, "%5.2f", x1) + ", x_2#=" + String.format(Locale.US, "%5.2f", x2) + ", &D@x_1#=" + String.format(Locale.US, "%5.2f", delx1) + ", &D@x_2#=" + String.format(Locale.US, "%5.2f", delx2) + ", &r@=" + String.format(Locale.US, "%5.2f", rho) + ", M=" + String.format(Locale.US, "%5.2f", m) + ", P=" + String.format(Locale.US, "%6.4f", p); new GraphicsWithDataPointsAndPolyline( getClass().getName(), "", xpl, ypl, 1, .3, datx, daty, datsx, datsy, datrho, "t", "y", caption); }
public double evaluate(double x) { return Math.log(x * x + 1) - Math.exp(0.4 * x) * Math.cos(Math.PI * x); }