/** Generate output image whose type is same as input image. */ private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) { int width = imp.getWidth(); int height = imp.getHeight(); float[] pixels = (float[]) fp.getPixels(); ImageProcessor oip = null; // Create output image consistent w/ type of input image. int size = pixels.length; switch (ptype) { case BYTE_TYPE: oip = imp.getProcessor().createProcessor(width, height); byte[] pixels8 = (byte[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels8[i] = (byte) pixels[i]; break; case SHORT_TYPE: oip = imp.getProcessor().createProcessor(width, height); short[] pixels16 = (short[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels16[i] = (short) pixels[i]; break; case FLOAT_TYPE: oip = new FloatProcessor(width, height, pixels, null); break; } // Adjust for display. // Calling this on non-ByteProcessors ensures image // processor is set up to correctly display image. oip.resetMinAndMax(); // Create new image plus object. Don't use // ImagePlus.createImagePlus here because there may be // attributes of input image that are not appropriate for // projection. return new ImagePlus(makeTitle(), oip); }
void Bernsen(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Bernsen recommends WIN_SIZE = 31 and CONTRAST_THRESHOLD = 15. // 1) Bernsen J. (1986) "Dynamic Thresholding of Grey-Level Images" // Proc. of the 8th Int. Conf. on Pattern Recognition, pp. 1251-1255 // 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding // Techniques and Quantitative Performance Evaluation" Journal of // Electronic Imaging, 13(1): 146-165 // http://citeseer.ist.psu.edu/sezgin04survey.html // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int contrast_threshold = 15; int local_contrast; int mid_gray; byte object; byte backg; int temp; if (par1 != 0) { IJ.log("Bernsen: changed contrast_threshold from :" + contrast_threshold + " to:" + par1); contrast_threshold = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { local_contrast = (int) ((max[i] & 0xff) - (min[i] & 0xff)); mid_gray = (int) ((min[i] & 0xff) + (max[i] & 0xff)) / 2; temp = (int) (pixels[i] & 0x0000ff); if (local_contrast < contrast_threshold) pixels[i] = (mid_gray >= 128) ? object : backg; // Low contrast region else pixels[i] = (temp >= mid_gray) ? object : backg; } // imp.updateAndDraw(); return; }
void Contrast(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // G. Landini, 2013 // Based on a simple contrast toggle. This procedure does not have user-provided paramters other // than the kernel radius // Sets the pixel value to either white or black depending on whether its current value is // closest to the local Max or Min respectively // The procedure is similar to Toggle Contrast Enhancement (see Soille, Morphological Image // Analysis (2004), p. 259 ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((Math.abs((int) (max[i] & 0xff - pixels[i] & 0xff)) <= Math.abs((int) (pixels[i] & 0xff - min[i] & 0xff)))) ? object : backg; } // imp.updateAndDraw(); return; }
void MidGrey(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (par1 != 0) { IJ.log("MidGrey: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((int) (pixels[i] & 0xff) > (int) (((max[i] & 0xff) + (min[i] & 0xff)) / 2) - c_value) ? object : backg; } // imp.updateAndDraw(); return; }
void Mean(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Meanimp; ImageProcessor ip = imp.getProcessor(), ipMean; int c_value = 0; byte object; byte backg; if (par1 != 0) { IJ.log("Mean: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] - c_value)) ? object : backg; // imp.updateAndDraw(); return; }
void Sauvola(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Sauvola recommends K_VALUE = 0.5 and R_VALUE = 128. // This is a modification of Niblack's thresholding method. // Sauvola J. and Pietaksinen M. (2000) "Adaptive Document Image Binarization" // Pattern Recognition, 33(2): 225-236 // http://www.ee.oulu.fi/mvg/publications/show_pdf.php?ID=24 // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar; double k_value = 0.5; double r_value = 128; byte object; byte backg; if (par1 != 0) { IJ.log("Sauvola: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log("Sauvola: changed r_value from :" + r_value + " to:" + par2); r_value = par2; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); rf.rank(ipVar, radius, rf.VARIANCE); // Variance // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] var = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] * (1.0 + k_value * ((Math.sqrt(var[i]) / r_value) - 1.0)))) ? object : backg; // imp.updateAndDraw(); return; }
void Phansalkar(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // This is a modification of Sauvola's thresholding method to deal with low contrast images. // Phansalskar N. et al. Adaptive local thresholding for detection of nuclei in diversity // stained // cytology images.International Conference on Communications and Signal Processing (ICCSP), // 2011, // 218 - 220. // In this method, the threshold t = mean*(1+p*exp(-q*mean)+k*((stdev/r)-1)) // Phansalkar recommends k = 0.25, r = 0.5, p = 2 and q = 10. In this plugin, k and r are the // parameters 1 and 2 respectively, but the values of p and q are fixed. // // Implemented from Phansalkar's paper description by G. Landini // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp, Orimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar, ipOri; double k_value = 0.25; double r_value = 0.5; double p_value = 2.0; double q_value = 10.0; byte object; byte backg; if (par1 != 0) { IJ.log("Phansalkar: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log("Phansalkar: changed r_value from :" + r_value + " to:" + par2); r_value = par2; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ContrastEnhancer ce = new ContrastEnhancer(); ce.stretchHistogram(Meanimp, 0.0); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); ipMean.multiply(1.0 / 255); Orimp = duplicateImage(ip); ce.stretchHistogram(Orimp, 0.0); ic = new ImageConverter(Orimp); ic.convertToGray32(); ipOri = Orimp.getProcessor(); ipOri.multiply(1.0 / 255); // original to compare // Orimp.show(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ce.stretchHistogram(Varimp, 0.0); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); ipVar.multiply(1.0 / 255); rf.rank(ipVar, radius, rf.VARIANCE); // Variance ipVar.sqr(); // SD // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] ori = (float[]) ipOri.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] sd = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((ori[i]) > (mean[i] * (1.0 + p_value * Math.exp(-q_value * mean[i]) + k_value * ((sd[i] / r_value) - 1.0)))) ? object : backg; // imp.updateAndDraw(); return; }
void Otsu(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Otsu's threshold algorithm // C++ code by Jordan Bevik <*****@*****.**> // ported to ImageJ plugin by G.Landini. Same algorithm as in Auto_Threshold, this time on local // circular regions int[] data; int w = imp.getWidth(); int h = imp.getHeight(); int position; int radiusx2 = radius * 2; ImageProcessor ip = imp.getProcessor(); byte[] pixels = (byte[]) ip.getPixels(); byte[] pixelsOut = new byte [pixels.length]; // need this to avoid changing the image data (and further histograms) byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } int k, kStar; // k = the current threshold; kStar = optimal threshold int N1, N; // N1 = # points with intensity <=k; N = total number of points double BCV, BCVmax; // The current Between Class Variance and maximum BCV double num, denom; // temporary bookeeping int Sk; // The total intensity for all histogram points <=k int S, L = 256; // The total intensity of the image. Need to hange here if modifying for >8 bits // images int roiy; Roi roi = new OvalRoi(0, 0, radiusx2, radiusx2); // ip.setRoi(roi); for (int y = 0; y < h; y++) { IJ.showProgress( (double) (y) / (h - 1)); // this method is slow, so let's show the progress bar roiy = y - radius; for (int x = 0; x < w; x++) { roi.setLocation(x - radius, roiy); ip.setRoi(roi); // ip.setRoi(new OvalRoi(x-radius, roiy, radiusx2, radiusx2)); position = x + y * w; data = ip.getHistogram(); // Initialize values: S = N = 0; for (k = 0; k < L; k++) { S += k * data[k]; // Total histogram intensity N += data[k]; // Total number of data points } Sk = 0; N1 = data[0]; // The entry for zero intensity BCV = 0; BCVmax = 0; kStar = 0; // Look at each possible threshold value, // calculate the between-class variance, and decide if it's a max for (k = 1; k < L - 1; k++) { // No need to check endpoints k = 0 or k = L-1 Sk += k * data[k]; N1 += data[k]; // The float casting here is to avoid compiler warning about loss of precision and // will prevent overflow in the case of large saturated images denom = (double) (N1) * (N - N1); // Maximum value of denom is (N^2)/4 = approx. 3E10 if (denom != 0) { // Float here is to avoid loss of precision when dividing num = ((double) N1 / N) * S - Sk; // Maximum value of num = 255*N = approx 8E7 BCV = (num * num) / denom; } else BCV = 0; if (BCV >= BCVmax) { // Assign the best threshold found so far BCVmax = BCV; kStar = k; } } // kStar += 1; // Use QTI convention that intensity -> 1 if intensity >= k // (the algorithm was developed for I-> 1 if I <= k.) // return kStar; pixelsOut[position] = ((int) (pixels[position] & 0xff) > kStar) ? object : backg; } } for (position = 0; position < w * h; position++) pixels[position] = pixelsOut[position]; // update with thresholded pixels }
void Niblack(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Niblack recommends K_VALUE = -0.2 for images with black foreground // objects, and K_VALUE = +0.2 for images with white foreground objects. // Niblack W. (1986) "An introduction to Digital Image Processing" Prentice-Hall. // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar; double k_value; int c_value = 0; byte object; byte backg; if (doIwhite) { k_value = 0.2; object = (byte) 0xff; backg = (byte) 0; } else { k_value = -0.2; object = (byte) 0; backg = (byte) 0xff; } if (par1 != 0) { IJ.log("Niblack: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log( "Niblack: changed c_value from :" + c_value + " to:" + par2); // requested feature, not in original c_value = (int) par2; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); rf.rank(ipVar, radius, rf.VARIANCE); // Variance // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] var = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] + k_value * Math.sqrt(var[i]) - c_value)) ? object : backg; // imp.updateAndDraw(); return; }