private void dumpMetadata(String group, List<Example> examples) { LispTree tree = LispTree.proto.newList(); tree.addChild("metadata"); tree.addChild(LispTree.proto.newList("group", group)); tree.addChild(LispTree.proto.newList("size", "" + examples.size())); tree.print(out); out.println(); }
private void dumpExample(LispTree tree) { out.println("(example"); for (LispTree subtree : tree.children.subList(1, tree.children.size())) { if (!subtree.isLeaf() && "derivations".equals(subtree.children.get(0).value)) { if (subtree.children.size() == 1) { out.println(" (derivations)"); } else { out.println(" (derivations"); for (LispTree derivation : subtree.children.subList(1, subtree.children.size())) { out.write(" "); derivation.print(Integer.MAX_VALUE, Integer.MAX_VALUE, out); out.write("\n"); } out.println(" )"); } } else { out.write(" "); subtree.print(Integer.MAX_VALUE, Integer.MAX_VALUE, out); out.write("\n"); } } out.println(")"); }
public static Evaluation eval(InferState state) { // Print out information about how well we're doing. Evaluation evaluation = new Evaluation(); Candidate trueCandidate = state.getTrueCandidate(); Candidate predCandidate = state.getCandidates().get(0); PredictionContext context = state.getContext(); NgramContext ngramContext = NgramContext.get(context); Statistics statistics = state.getStatistics(); Corpus corpus = statistics.getProjectLangCorpus(context.getPath()); DataSummary summary = statistics.getStatistic(NgramKNCounts.class, corpus).getSummary(); Params params = state.getParams(); boolean oracle = state.isOracle(); int rank = state.getRank(); double entropy = state.getEntropy(); double reciprocalRank = state.getReciprocalRank(); boolean isIdent = state.isIdent(); boolean correct = state.isCorrect(); String path = context.getPath(); String trueTokenStr = trueCandidate.token; String predToken = predCandidate.token; evaluation.add("accuracy", correct); evaluation.add("oracle", oracle); evaluation.add("rank", rank); evaluation.add("reciprocalRank", reciprocalRank); if (oracle) { evaluation.add("entropy", entropy); } if (isIdent) { evaluation.add("identAccuracy", correct); evaluation.add("identOracle", oracle); if (oracle) { evaluation.add("identEntropy", entropy); evaluation.add("identReciprocalRank", reciprocalRank); for (int i = 0; i < Main.clusters; i++) { evaluation.add("identEntropy" + i, -Math.log(trueCandidate.clusterProbs[i])); } } } String contextStr = ngramContext.contextStr(); if (Main.verbose >= 2) { String entropyStr = oracle ? Fmt.D(entropy) : "N/A"; begin_track( "Example %s [%s]: %s (%d candidates, rank %s, entropy %s)", path, correct ? "CORRECT" : "WRONG", contextStr, state.getCandidates().size(), rank, entropyStr); logs("True (prob= %s): [%s]", Fmt.D(trueCandidate.prob), trueTokenStr); logs("Pred (prob= %s): [%s]", Fmt.D(predCandidate.prob), predToken); if (oracle) { KneserNey.logKNIs(true); KneserNey.computeProb(CandidateNgram.get(context, trueCandidate), summary); KneserNey.logKNIs(false); } // begin_track("True"); FeatureVector.logFeatureWeights("True", trueCandidate.features.toMap(), params); // for (int i = 0; i < Main.clusters; i++) { // logs("cluster=%d, score %s, prob %s", i, Fmt.D(trueCandidate.clusterScores[i]), // Fmt.D(trueCandidate.clusterProbs[i])); // FeatureVector.logFeatureWeights("cluster=" + i, // trueCandidate.clusterFeatures.toMap(), // params, Main.clusterDecorators[i]); // } // end_track(); KneserNey.logKNIs(true); KneserNey.computeProb(CandidateNgram.get(context, predCandidate), summary); KneserNey.logKNIs(false); FeatureVector.logFeatureWeights("Pred", predCandidate.features.toMap(), params); // for (Candidate candidate : candidates) { // begin_track("Candidate " + candidate.token); // for (int i = 0; i < Main.clusters; i++) { // logs("cluster=%d, score %s, prob %s", i, Fmt.D(candidate.clusterScores[i]), // Fmt.D(candidate.clusterProbs[i])); // FeatureVector.logFeatureWeights("cluster=" + i, // candidate.clusterFeatures.toMap(), // params, Main.clusterDecorators[i]); // } // end_track(); // } FeatureVector.logFeatureDiff( "True - Pred", trueCandidate.features, predCandidate.features, params); end_track(); } // Longest context that has been seen int context_max_n = ngramContext.getMax_n() - 1; while (context_max_n > 0 && !summary.counts[context_max_n].containsKey(ngramContext.subContext(context_max_n + 1))) context_max_n--; evaluation.add("context_max_n", context_max_n); predOut.println( "path=" + path + "\tident=" + (isIdent ? 1 : 0) + "\tcontext=" + contextStr + "\tcontext_max_n=" + context_max_n + "\ttrue=" + trueTokenStr + "\tpred=" + predToken + "\trank=" + rank + "\tentropy=" + entropy); predOut.flush(); entOut.println( path + "\t" + state.getTrueToken().loc() + "\t" + (isIdent ? 1 : 0) + "\t" + (oracle ? entropy : (state.isOov() ? "oov" : "offBeam")) + "\t" + reciprocalRank); entOut.flush(); return evaluation; }