private void mergeProfiles(int p100Length, int gcpLength) { log.info("Merging profiles"); ArrayList<AssayType> dummyAssay = new ArrayList<>(); dummyAssay.add(AssayType.GCP); dummyAssay.add(AssayType.P100); List<Profile> profiles = profileRepository.findByAssayTypeInOrderByConcatDesc(dummyAssay); String prevConcat = null; String curConcat; List<Profile> bunchOfProfiles = null; for (Profile profile : profiles) { curConcat = profile.getReplicateAnnotation().getCellId() + profile.getReplicateAnnotation().getPertiname(); if (prevConcat == null) { prevConcat = curConcat; bunchOfProfiles = new ArrayList<>(); } if (!curConcat.equals(prevConcat)) { prevConcat = curConcat; MergedProfile mergedProfile = UtilsTransform.mergeProfiles(bunchOfProfiles, p100Length, gcpLength); mergedProfileRepository.save(mergedProfile); bunchOfProfiles = new ArrayList<>(); } else { bunchOfProfiles.add(profile); } } }
private void normalize() { List<AssayType> assayTypes = Arrays.asList(AssayType.GCP, AssayType.P100); // do loop for each assay e.g. P100, GCP for (AssayType assayType : assayTypes) { log.info("Normalize matrix of peak values for assay: {}", assayType); List<PeakArea> allPeakAreas = peakAreaRepository.findByGctFileAssayType(assayType); // inefficient, try with database count int numberOfPeptides = peptideAnnotationRepository.findByAssayType(assayType).size(); int numberOfReplicates = replicateAnnotationRepository.findByAssayType(assayType).size(); ArrayList<Integer> mapPeptideIdToRowId = new ArrayList<>(); ArrayList<Integer> mapReplicateIdToColumnId = new ArrayList<>(); // double[][] matrix = new double[replicates][peptides]; // init matrix with sizes List<List<Double>> peaksAsMatrix = new ArrayList<>(numberOfReplicates); for (int i = 0; i < numberOfReplicates; i++) { peaksAsMatrix.add(new ArrayList<>(numberOfPeptides)); } for (PeakArea peakArea : allPeakAreas) { int peptideId = Math.toIntExact(peakArea.getPeptideAnnotation().getId()); int replicateId = Math.toIntExact(peakArea.getReplicateAnnotation().getId()); Double rawValue = peakArea.getValue(); int mappedRowId; int mappedColumnId; if (!mapPeptideIdToRowId.contains(peptideId)) { mapPeptideIdToRowId.add(peptideId); } mappedRowId = mapPeptideIdToRowId.indexOf(peptideId); if (!mapReplicateIdToColumnId.contains(replicateId)) { mapReplicateIdToColumnId.add(replicateId); } mappedColumnId = mapReplicateIdToColumnId.indexOf(replicateId); peaksAsMatrix.get(mappedColumnId).set(mappedRowId, rawValue); } List<List<Double>> outputMatrix = Normalizer.quantileAndZScoreNormalize(peaksAsMatrix); // write normalized values back to DB for (int i = 0; i < numberOfReplicates; i++) { for (int j = 0; j < numberOfPeptides; j++) { Double normalizedValue = outputMatrix.get(i).get(j); Long databaseReplicateId = mapReplicateIdToColumnId.get(i).longValue(); Long databasePeptideId = mapPeptideIdToRowId.get(j).longValue(); List<PeakArea> peakAreas = peakAreaRepository .findByGctFileAssayTypeAndReplicateAnnotationIdAndPeptideAnnotationId( assayType, databaseReplicateId, databasePeptideId); assert peakAreas.size() == 1; PeakArea peakArea = peakAreas.get(0); peakArea.setNormalizedValue(normalizedValue); // Fill in normalized value field in DB peakAreaRepository.save(peakArea); } } log.info( "Normalized assay: {} peptides: {}, replicates: {}.", assayType, numberOfPeptides, numberOfReplicates); } }