/** @param args */ public static void main(String[] args) { if (args.length != 1) { System.err.println("Usage: java " + ATBCorrector.class.getName() + " filename\n"); System.exit(-1); } TreeTransformer tt = new ATBCorrector(); File f = new File(args[0]); try { BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(f), "UTF-8")); TreeReaderFactory trf = new ArabicTreeReaderFactory.ArabicRawTreeReaderFactory(); TreeReader tr = trf.newTreeReader(br); int nTrees = 0; for (Tree t; (t = tr.readTree()) != null; nTrees++) { Tree fixedT = tt.transformTree(t); System.out.println(fixedT.toString()); } tr.close(); System.err.printf("Wrote %d trees%n", nTrees); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } }
/** * Returns the set of dependencies in a tree, according to some {@link * edu.stanford.nlp.trees.DependencyTyper}. */ public static <E> Collection<E> dependencyObjectify( Tree t, HeadFinder hf, TreeTransformer collinizer, DependencyTyper<E> typer) { Collection<E> deps = new ArrayList<E>(); Tree t1 = collinizer.transformTree(t); if (t1 == null) return deps; dependencyObjectifyHelper(t1, t1, hf, deps, typer); return deps; }
List<Tree> prune(List<Tree> treeList, Label label, int start, int end) { // get reference tree if (treeList.size() == 1) { return treeList; } Tree testTree = treeList.get(0).treeFactory().newTreeNode(label, treeList); int goal = Numberer.getGlobalNumberer("states").number(label.value()); Tree tempTree = parser.extractBestParse(goal, start, end); // parser.restoreUnaries(tempTree); Tree pcfgTree = debinarizer.transformTree(tempTree); Set<Constituent> pcfgConstituents = pcfgTree.constituents(new LabeledScoredConstituentFactory()); // delete child labels that are not in reference but do not cross reference List<Tree> prunedChildren = new ArrayList<Tree>(); int childStart = 0; for (int c = 0, numCh = testTree.numChildren(); c < numCh; c++) { Tree child = testTree.getChild(c); boolean isExtra = true; int childEnd = childStart + child.yield().size(); Constituent childConstituent = new LabeledScoredConstituent(childStart, childEnd, child.label(), 0); if (pcfgConstituents.contains(childConstituent)) { isExtra = false; } if (childConstituent.crosses(pcfgConstituents)) { isExtra = false; } if (child.isLeaf() || child.isPreTerminal()) { isExtra = false; } if (pcfgTree.yield().size() != testTree.yield().size()) { isExtra = false; } if (!label.value().startsWith("NP^NP")) { isExtra = false; } if (isExtra) { System.err.println( "Pruning: " + child.label() + " from " + (childStart + start) + " to " + (childEnd + start)); System.err.println("Was: " + testTree + " vs " + pcfgTree); prunedChildren.addAll(child.getChildrenAsList()); } else { prunedChildren.add(child); } childStart = childEnd; } return prunedChildren; }
/** * Takes a Tree and a collinizer and returns a Collection of {@link Constituent}s for PARSEVAL * evaluation. Some notes on this particular parseval: * * <ul> * <li>It is character-based, which allows it to be used on segmentation/parsing combination * evaluation. * <li>whether it gives you labeled or unlabeled bracketings depends on the value of the <code> * labelConstituents</code> parameter * </ul> * * (Note that I haven't checked this rigorously yet with the PARSEVAL definition -- Roger.) */ public static Collection<Constituent> parsevalObjectify( Tree t, TreeTransformer collinizer, boolean labelConstituents) { Collection<Constituent> spans = new ArrayList<Constituent>(); Tree t1 = collinizer.transformTree(t); if (t1 == null) { return spans; } for (Tree node : t1) { if (node.isLeaf() || node.isPreTerminal() || (node != t1 && node.parent(t1) == null)) { continue; } int leftEdge = t1.leftCharEdge(node); int rightEdge = t1.rightCharEdge(node); if (labelConstituents) spans.add(new LabeledConstituent(leftEdge, rightEdge, node.label())); else spans.add(new SimpleConstituent(leftEdge, rightEdge)); } return spans; }
public static void main(String[] args) { Options op = new Options(new EnglishTreebankParserParams()); // op.tlpParams may be changed to something else later, so don't use it till // after options are parsed. System.out.println(StringUtils.toInvocationString("FactoredParser", args)); String path = "/u/nlp/stuff/corpora/Treebank3/parsed/mrg/wsj"; int trainLow = 200, trainHigh = 2199, testLow = 2200, testHigh = 2219; String serializeFile = null; int i = 0; while (i < args.length && args[i].startsWith("-")) { if (args[i].equalsIgnoreCase("-path") && (i + 1 < args.length)) { path = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-train") && (i + 2 < args.length)) { trainLow = Integer.parseInt(args[i + 1]); trainHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-test") && (i + 2 < args.length)) { testLow = Integer.parseInt(args[i + 1]); testHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-serialize") && (i + 1 < args.length)) { serializeFile = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-tLPP") && (i + 1 < args.length)) { try { op.tlpParams = (TreebankLangParserParams) Class.forName(args[i + 1]).newInstance(); } catch (ClassNotFoundException e) { System.err.println("Class not found: " + args[i + 1]); throw new RuntimeException(e); } catch (InstantiationException e) { System.err.println("Couldn't instantiate: " + args[i + 1] + ": " + e.toString()); throw new RuntimeException(e); } catch (IllegalAccessException e) { System.err.println("illegal access" + e); throw new RuntimeException(e); } i += 2; } else if (args[i].equals("-encoding")) { // sets encoding for TreebankLangParserParams op.tlpParams.setInputEncoding(args[i + 1]); op.tlpParams.setOutputEncoding(args[i + 1]); i += 2; } else { i = op.setOptionOrWarn(args, i); } } // System.out.println(tlpParams.getClass()); TreebankLanguagePack tlp = op.tlpParams.treebankLanguagePack(); op.trainOptions.sisterSplitters = new HashSet<String>(Arrays.asList(op.tlpParams.sisterSplitters())); // BinarizerFactory.TreeAnnotator.setTreebankLang(tlpParams); PrintWriter pw = op.tlpParams.pw(); op.testOptions.display(); op.trainOptions.display(); op.display(); op.tlpParams.display(); // setup tree transforms Treebank trainTreebank = op.tlpParams.memoryTreebank(); MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank(); // Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank(); // String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/"; // blippTreebank.loadPath(blippPath, "", true); Timing.startTime(); System.err.print("Reading trees..."); testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true)); if (op.testOptions.increasingLength) { Collections.sort(testTreebank, new TreeLengthComparator()); } trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true)); Timing.tick("done."); System.err.print("Binarizing trees..."); TreeAnnotatorAndBinarizer binarizer; if (!op.trainOptions.leftToRight) { binarizer = new TreeAnnotatorAndBinarizer( op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op); } else { binarizer = new TreeAnnotatorAndBinarizer( op.tlpParams.headFinder(), new LeftHeadFinder(), op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op); } CollinsPuncTransformer collinsPuncTransformer = null; if (op.trainOptions.collinsPunc) { collinsPuncTransformer = new CollinsPuncTransformer(tlp); } TreeTransformer debinarizer = new Debinarizer(op.forceCNF); List<Tree> binaryTrainTrees = new ArrayList<Tree>(); if (op.trainOptions.selectiveSplit) { op.trainOptions.splitters = ParentAnnotationStats.getSplitCategories( trainTreebank, op.trainOptions.tagSelectiveSplit, 0, op.trainOptions.selectiveSplitCutOff, op.trainOptions.tagSelectiveSplitCutOff, op.tlpParams.treebankLanguagePack()); if (op.trainOptions.deleteSplitters != null) { List<String> deleted = new ArrayList<String>(); for (String del : op.trainOptions.deleteSplitters) { String baseDel = tlp.basicCategory(del); boolean checkBasic = del.equals(baseDel); for (Iterator<String> it = op.trainOptions.splitters.iterator(); it.hasNext(); ) { String elem = it.next(); String baseElem = tlp.basicCategory(elem); boolean delStr = checkBasic && baseElem.equals(baseDel) || elem.equals(del); if (delStr) { it.remove(); deleted.add(elem); } } } System.err.println("Removed from vertical splitters: " + deleted); } } if (op.trainOptions.selectivePostSplit) { TreeTransformer myTransformer = new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams, op); Treebank annotatedTB = trainTreebank.transform(myTransformer); op.trainOptions.postSplitters = ParentAnnotationStats.getSplitCategories( annotatedTB, true, 0, op.trainOptions.selectivePostSplitCutOff, op.trainOptions.tagSelectivePostSplitCutOff, op.tlpParams.treebankLanguagePack()); } if (op.trainOptions.hSelSplit) { binarizer.setDoSelectiveSplit(false); for (Tree tree : trainTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } // tree.pennPrint(tlpParams.pw()); tree = binarizer.transformTree(tree); // binaryTrainTrees.add(tree); } binarizer.setDoSelectiveSplit(true); } for (Tree tree : trainTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTrainTrees.add(tree); } if (op.testOptions.verbose) { binarizer.dumpStats(); } List<Tree> binaryTestTrees = new ArrayList<Tree>(); for (Tree tree : testTreebank) { if (op.trainOptions.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTestTrees.add(tree); } Timing.tick("done."); // binarization BinaryGrammar bg = null; UnaryGrammar ug = null; DependencyGrammar dg = null; // DependencyGrammar dgBLIPP = null; Lexicon lex = null; Index<String> stateIndex = new HashIndex<String>(); // extract grammars Extractor<Pair<UnaryGrammar, BinaryGrammar>> bgExtractor = new BinaryGrammarExtractor(op, stateIndex); // Extractor bgExtractor = new SmoothedBinaryGrammarExtractor();//new BinaryGrammarExtractor(); // Extractor lexExtractor = new LexiconExtractor(); // Extractor dgExtractor = new DependencyMemGrammarExtractor(); if (op.doPCFG) { System.err.print("Extracting PCFG..."); Pair<UnaryGrammar, BinaryGrammar> bgug = null; if (op.trainOptions.cheatPCFG) { List<Tree> allTrees = new ArrayList<Tree>(binaryTrainTrees); allTrees.addAll(binaryTestTrees); bgug = bgExtractor.extract(allTrees); } else { bgug = bgExtractor.extract(binaryTrainTrees); } bg = bgug.second; bg.splitRules(); ug = bgug.first; ug.purgeRules(); Timing.tick("done."); } System.err.print("Extracting Lexicon..."); Index<String> wordIndex = new HashIndex<String>(); Index<String> tagIndex = new HashIndex<String>(); lex = op.tlpParams.lex(op, wordIndex, tagIndex); lex.train(binaryTrainTrees); Timing.tick("done."); if (op.doDep) { System.err.print("Extracting Dependencies..."); binaryTrainTrees.clear(); Extractor<DependencyGrammar> dgExtractor = new MLEDependencyGrammarExtractor(op, wordIndex, tagIndex); // dgBLIPP = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams,true)); // DependencyGrammar dg1 = dgExtractor.extract(trainTreebank.iterator(), new // TransformTreeDependency(op.tlpParams, true)); // dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new // TransformTreeDependency(tlpParams)); // dg = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams)); // dg=new DependencyGrammarCombination(dg1,dgBLIPP,2); dg = dgExtractor.extract( binaryTrainTrees); // uses information whether the words are known or not, discards // unknown words Timing.tick("done."); // System.out.print("Extracting Unknown Word Model..."); // UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees); // Timing.tick("done."); System.out.print("Tuning Dependency Model..."); dg.tune(binaryTestTrees); // System.out.println("TUNE DEPS: "+tuneDeps); Timing.tick("done."); } BinaryGrammar boundBG = bg; UnaryGrammar boundUG = ug; GrammarProjection gp = new NullGrammarProjection(bg, ug); // serialization if (serializeFile != null) { System.err.print("Serializing parser..."); LexicalizedParser.saveParserDataToSerialized( new ParserData(lex, bg, ug, dg, stateIndex, wordIndex, tagIndex, op), serializeFile); Timing.tick("done."); } // test: pcfg-parse and output ExhaustivePCFGParser parser = null; if (op.doPCFG) { parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op, stateIndex, wordIndex, tagIndex); } ExhaustiveDependencyParser dparser = ((op.doDep && !op.testOptions.useFastFactored) ? new ExhaustiveDependencyParser(dg, lex, op, wordIndex, tagIndex) : null); Scorer scorer = (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp, op), dparser) : null); // Scorer scorer = parser; BiLexPCFGParser bparser = null; if (op.doPCFG && op.doDep) { bparser = (op.testOptions.useN5) ? new BiLexPCFGParser.N5BiLexPCFGParser( scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex) : new BiLexPCFGParser( scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex); } Evalb pcfgPE = new Evalb("pcfg PE", true); Evalb comboPE = new Evalb("combo PE", true); AbstractEval pcfgCB = new Evalb.CBEval("pcfg CB", true); AbstractEval pcfgTE = new TaggingEval("pcfg TE"); AbstractEval comboTE = new TaggingEval("combo TE"); AbstractEval pcfgTEnoPunct = new TaggingEval("pcfg nopunct TE"); AbstractEval comboTEnoPunct = new TaggingEval("combo nopunct TE"); AbstractEval depTE = new TaggingEval("depnd TE"); AbstractEval depDE = new UnlabeledAttachmentEval("depnd DE", true, null, tlp.punctuationWordRejectFilter()); AbstractEval comboDE = new UnlabeledAttachmentEval("combo DE", true, null, tlp.punctuationWordRejectFilter()); if (op.testOptions.evalb) { EvalbFormatWriter.initEVALBfiles(op.tlpParams); } // int[] countByLength = new int[op.testOptions.maxLength+1]; // Use a reflection ruse, so one can run this without needing the // tagger. Using a function rather than a MaxentTagger means we // can distribute a version of the parser that doesn't include the // entire tagger. Function<List<? extends HasWord>, ArrayList<TaggedWord>> tagger = null; if (op.testOptions.preTag) { try { Class[] argsClass = {String.class}; Object[] arguments = new Object[] {op.testOptions.taggerSerializedFile}; tagger = (Function<List<? extends HasWord>, ArrayList<TaggedWord>>) Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger") .getConstructor(argsClass) .newInstance(arguments); } catch (Exception e) { System.err.println(e); System.err.println("Warning: No pretagging of sentences will be done."); } } for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) { Tree tree = testTreebank.get(tNum); int testTreeLen = tree.yield().size(); if (testTreeLen > op.testOptions.maxLength) { continue; } Tree binaryTree = binaryTestTrees.get(tNum); // countByLength[testTreeLen]++; System.out.println("-------------------------------------"); System.out.println("Number: " + (tNum + 1)); System.out.println("Length: " + testTreeLen); // tree.pennPrint(pw); // System.out.println("XXXX The binary tree is"); // binaryTree.pennPrint(pw); // System.out.println("Here are the tags in the lexicon:"); // System.out.println(lex.showTags()); // System.out.println("Here's the tagnumberer:"); // System.out.println(Numberer.getGlobalNumberer("tags").toString()); long timeMil1 = System.currentTimeMillis(); Timing.tick("Starting parse."); if (op.doPCFG) { // System.err.println(op.testOptions.forceTags); if (op.testOptions.forceTags) { if (tagger != null) { // System.out.println("Using a tagger to set tags"); // System.out.println("Tagged sentence as: " + // tagger.processSentence(cutLast(wordify(binaryTree.yield()))).toString(false)); parser.parse(addLast(tagger.apply(cutLast(wordify(binaryTree.yield()))))); } else { // System.out.println("Forcing tags to match input."); parser.parse(cleanTags(binaryTree.taggedYield(), tlp)); } } else { // System.out.println("XXXX Parsing " + binaryTree.yield()); parser.parse(binaryTree.yieldHasWord()); } // Timing.tick("Done with pcfg phase."); } if (op.doDep) { dparser.parse(binaryTree.yieldHasWord()); // Timing.tick("Done with dependency phase."); } boolean bothPassed = false; if (op.doPCFG && op.doDep) { bothPassed = bparser.parse(binaryTree.yieldHasWord()); // Timing.tick("Done with combination phase."); } long timeMil2 = System.currentTimeMillis(); long elapsed = timeMil2 - timeMil1; System.err.println("Time: " + ((int) (elapsed / 100)) / 10.00 + " sec."); // System.out.println("PCFG Best Parse:"); Tree tree2b = null; Tree tree2 = null; // System.out.println("Got full best parse..."); if (op.doPCFG) { tree2b = parser.getBestParse(); tree2 = debinarizer.transformTree(tree2b); } // System.out.println("Debinarized parse..."); // tree2.pennPrint(); // System.out.println("DepG Best Parse:"); Tree tree3 = null; Tree tree3db = null; if (op.doDep) { tree3 = dparser.getBestParse(); // was: but wrong Tree tree3db = debinarizer.transformTree(tree2); tree3db = debinarizer.transformTree(tree3); tree3.pennPrint(pw); } // tree.pennPrint(); // ((Tree)binaryTrainTrees.get(tNum)).pennPrint(); // System.out.println("Combo Best Parse:"); Tree tree4 = null; if (op.doPCFG && op.doDep) { try { tree4 = bparser.getBestParse(); if (tree4 == null) { tree4 = tree2b; } } catch (NullPointerException e) { System.err.println("Blocked, using PCFG parse!"); tree4 = tree2b; } } if (op.doPCFG && !bothPassed) { tree4 = tree2b; } // tree4.pennPrint(); if (op.doDep) { depDE.evaluate(tree3, binaryTree, pw); depTE.evaluate(tree3db, tree, pw); } TreeTransformer tc = op.tlpParams.collinizer(); TreeTransformer tcEvalb = op.tlpParams.collinizerEvalb(); if (op.doPCFG) { // System.out.println("XXXX Best PCFG was: "); // tree2.pennPrint(); // System.out.println("XXXX Transformed best PCFG is: "); // tc.transformTree(tree2).pennPrint(); // System.out.println("True Best Parse:"); // tree.pennPrint(); // tc.transformTree(tree).pennPrint(); pcfgPE.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); pcfgCB.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); Tree tree4b = null; if (op.doDep) { comboDE.evaluate((bothPassed ? tree4 : tree3), binaryTree, pw); tree4b = tree4; tree4 = debinarizer.transformTree(tree4); if (op.nodePrune) { NodePruner np = new NodePruner(parser, debinarizer); tree4 = np.prune(tree4); } // tree4.pennPrint(); comboPE.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } // pcfgTE.evaluate(tree2, tree); pcfgTE.evaluate(tcEvalb.transformTree(tree2), tcEvalb.transformTree(tree), pw); pcfgTEnoPunct.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); if (op.doDep) { comboTE.evaluate(tcEvalb.transformTree(tree4), tcEvalb.transformTree(tree), pw); comboTEnoPunct.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } System.out.println("PCFG only: " + parser.scoreBinarizedTree(tree2b, 0)); // tc.transformTree(tree2).pennPrint(); tree2.pennPrint(pw); if (op.doDep) { System.out.println("Combo: " + parser.scoreBinarizedTree(tree4b, 0)); // tc.transformTree(tree4).pennPrint(pw); tree4.pennPrint(pw); } System.out.println("Correct:" + parser.scoreBinarizedTree(binaryTree, 0)); /* if (parser.scoreBinarizedTree(tree2b,true) < parser.scoreBinarizedTree(binaryTree,true)) { System.out.println("SCORE INVERSION"); parser.validateBinarizedTree(binaryTree,0); } */ tree.pennPrint(pw); } // end if doPCFG if (op.testOptions.evalb) { if (op.doPCFG && op.doDep) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree4)); } else if (op.doPCFG) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree2)); } else if (op.doDep) { EvalbFormatWriter.writeEVALBline( tcEvalb.transformTree(tree), tcEvalb.transformTree(tree3db)); } } } // end for each tree in test treebank if (op.testOptions.evalb) { EvalbFormatWriter.closeEVALBfiles(); } // op.testOptions.display(); if (op.doPCFG) { pcfgPE.display(false, pw); System.out.println("Grammar size: " + stateIndex.size()); pcfgCB.display(false, pw); if (op.doDep) { comboPE.display(false, pw); } pcfgTE.display(false, pw); pcfgTEnoPunct.display(false, pw); if (op.doDep) { comboTE.display(false, pw); comboTEnoPunct.display(false, pw); } } if (op.doDep) { depTE.display(false, pw); depDE.display(false, pw); } if (op.doPCFG && op.doDep) { comboDE.display(false, pw); } // pcfgPE.printGoodBad(); }
/** * Run the Evalb scoring metric on guess/gold input. The default language is English. * * @param args */ public static void main(String[] args) { TreebankLangParserParams tlpp = new EnglishTreebankParserParams(); int maxGoldYield = Integer.MAX_VALUE; boolean VERBOSE = false; String encoding = "UTF-8"; String guessFile = null; String goldFile = null; Map<String, String[]> argsMap = StringUtils.argsToMap(args, optionArgDefs); for (Map.Entry<String, String[]> opt : argsMap.entrySet()) { if (opt.getKey() == null) continue; if (opt.getKey().equals("-l")) { Language lang = Language.valueOf(opt.getValue()[0].trim()); tlpp = lang.params; } else if (opt.getKey().equals("-y")) { maxGoldYield = Integer.parseInt(opt.getValue()[0].trim()); } else if (opt.getKey().equals("-v")) { VERBOSE = true; } else if (opt.getKey().equals("-e")) { encoding = opt.getValue()[0]; } else { System.err.println(usage.toString()); System.exit(-1); } // Non-option arguments located at key null String[] rest = argsMap.get(null); if (rest == null || rest.length < minArgs) { System.err.println(usage.toString()); System.exit(-1); } goldFile = rest[0]; guessFile = rest[1]; } tlpp.setInputEncoding(encoding); final PrintWriter pwOut = tlpp.pw(); final Treebank guessTreebank = tlpp.diskTreebank(); guessTreebank.loadPath(guessFile); pwOut.println("GUESS TREEBANK:"); pwOut.println(guessTreebank.textualSummary()); final Treebank goldTreebank = tlpp.diskTreebank(); goldTreebank.loadPath(goldFile); pwOut.println("GOLD TREEBANK:"); pwOut.println(goldTreebank.textualSummary()); final UnlabeledAttachmentEval metric = new UnlabeledAttachmentEval("UAS LP/LR", true, tlpp.headFinder()); final TreeTransformer tc = tlpp.collinizer(); // The evalb ref implementation assigns status for each tree pair as follows: // // 0 - Ok (yields match) // 1 - length mismatch // 2 - null parse e.g. (()). // // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation. final Iterator<Tree> goldItr = goldTreebank.iterator(); final Iterator<Tree> guessItr = guessTreebank.iterator(); int goldLineId = 0; int guessLineId = 0; int skippedGuessTrees = 0; while (guessItr.hasNext() && goldItr.hasNext()) { Tree guessTree = guessItr.next(); List<? extends Label> guessYield = guessTree.yield(); guessLineId++; Tree goldTree = goldItr.next(); List<? extends Label> goldYield = goldTree.yield(); goldLineId++; // Check that we should evaluate this tree if (goldYield.size() > maxGoldYield) { skippedGuessTrees++; continue; } // Only trees with equal yields can be evaluated if (goldYield.size() != guessYield.size()) { pwOut.printf( "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n", goldYield.size(), guessYield.size(), goldLineId, guessLineId); skippedGuessTrees++; continue; } final Tree evalGuess = tc.transformTree(guessTree); evalGuess.indexLeaves(true); final Tree evalGold = tc.transformTree(goldTree); evalGold.indexLeaves(true); metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null)); } if (guessItr.hasNext() || goldItr.hasNext()) { System.err.printf( "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.", guessLineId, goldLineId); } pwOut.println( "================================================================================"); if (skippedGuessTrees != 0) pwOut.printf("%s %d guess trees\n", "Unable to evaluate", skippedGuessTrees); metric.display(true, pwOut); pwOut.println(); pwOut.close(); }
/** Execute with no arguments for usage. */ public static void main(String[] args) { if (!validateCommandLine(args)) { System.err.println(USAGE); System.exit(-1); } final TreebankLangParserParams tlpp = LANGUAGE.params; final PrintWriter pwOut = tlpp.pw(); final Treebank guessTreebank = tlpp.diskTreebank(); guessTreebank.loadPath(guessFile); pwOut.println("GUESS TREEBANK:"); pwOut.println(guessTreebank.textualSummary()); final Treebank goldTreebank = tlpp.diskTreebank(); goldTreebank.loadPath(goldFile); pwOut.println("GOLD TREEBANK:"); pwOut.println(goldTreebank.textualSummary()); final LeafAncestorEval metric = new LeafAncestorEval("LeafAncestor"); final TreeTransformer tc = tlpp.collinizer(); // The evalb ref implementation assigns status for each tree pair as follows: // // 0 - Ok (yields match) // 1 - length mismatch // 2 - null parse e.g. (()). // // In the cases of 1,2, evalb does not include the tree pair in the LP/LR computation. final Iterator<Tree> goldItr = goldTreebank.iterator(); final Iterator<Tree> guessItr = guessTreebank.iterator(); int goldLineId = 0; int guessLineId = 0; int skippedGuessTrees = 0; while (guessItr.hasNext() && goldItr.hasNext()) { Tree guessTree = guessItr.next(); List<? extends Label> guessYield = guessTree.yield(); guessLineId++; Tree goldTree = goldItr.next(); List<? extends Label> goldYield = goldTree.yield(); goldLineId++; // Check that we should evaluate this tree if (goldYield.size() > MAX_GOLD_YIELD) { skippedGuessTrees++; continue; } // Only trees with equal yields can be evaluated if (goldYield.size() != guessYield.size()) { pwOut.printf( "Yield mismatch gold: %d tokens vs. guess: %d tokens (lines: gold %d guess %d)%n", goldYield.size(), guessYield.size(), goldLineId, guessLineId); skippedGuessTrees++; continue; } final Tree evalGuess = tc.transformTree(guessTree); final Tree evalGold = tc.transformTree(goldTree); metric.evaluate(evalGuess, evalGold, ((VERBOSE) ? pwOut : null)); } if (guessItr.hasNext() || goldItr.hasNext()) { System.err.printf( "Guess/gold files do not have equal lengths (guess: %d gold: %d)%n.", guessLineId, goldLineId); } pwOut.println( "================================================================================"); if (skippedGuessTrees != 0) pwOut.printf("%s %d guess trees%n", "Unable to evaluate", skippedGuessTrees); metric.display(true, pwOut); pwOut.close(); }