/** * 57% of time spent in LogConditionalObjectiveFunction.calculateCLBatch() 22% spent in * constructing datums (expensive) * * <p>Single threaded, 4100 ms Multi threaded, 600 ms * * <p>With same data, seed 42, 52 ms With reordered accesses for cacheing, 38 ms Down to 73% of * the time * * <p>with 8 cpus, a 6.8x speedup -- basically the same as with RVFDatum */ public static void benchmarkLogisticRegression() { Dataset<String, String> data = new Dataset<>(); for (int i = 0; i < 10000; i++) { Random r = new Random(42); Set<String> features = new HashSet<>(); boolean cl = r.nextBoolean(); for (int j = 0; j < 1000; j++) { if (cl && i % 2 == 0) { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":true"); } else { features.add("f:" + j + ":false"); } } else { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":false"); } else { features.add("f:" + j + ":false"); } } } data.add(new BasicDatum<String, String>(features, "target:" + cl)); } LinearClassifierFactory<String, String> factory = new LinearClassifierFactory<>(); long msStart = System.currentTimeMillis(); factory.trainClassifier(data); long delay = System.currentTimeMillis() - msStart; System.out.println("Training took " + delay + " ms"); }
/** * 67% of time spent in LogConditionalObjectiveFunction.rvfcalculate() 29% of time spent in * dataset construction (11% in RVFDataset.addFeatures(), 7% rvf incrementCount(), 11% rest) * * <p>Single threaded, 4700 ms Multi threaded, 700 ms * * <p>With same data, seed 42, 245 ms With reordered accesses for cacheing, 195 ms Down to 80% of * the time, not huge but a win nonetheless * * <p>with 8 cpus, a 6.7x speedup -- almost, but not quite linear, pretty good */ public static void benchmarkRVFLogisticRegression() { RVFDataset<String, String> data = new RVFDataset<>(); for (int i = 0; i < 10000; i++) { Random r = new Random(42); Counter<String> features = new ClassicCounter<>(); boolean cl = r.nextBoolean(); for (int j = 0; j < 1000; j++) { double value; if (cl && i % 2 == 0) { value = (r.nextDouble() * 2.0) - 0.6; } else { value = (r.nextDouble() * 2.0) - 1.4; } features.incrementCount("f" + j, value); } data.add(new RVFDatum<>(features, "target:" + cl)); } LinearClassifierFactory<String, String> factory = new LinearClassifierFactory<>(); long msStart = System.currentTimeMillis(); factory.trainClassifier(data); long delay = System.currentTimeMillis() - msStart; System.out.println("Training took " + delay + " ms"); }
/** on my machine this results in a factor of two gain, roughly */ public static void testAdjacency() { double[][] sqar = new double[10000][1000]; Random r = new Random(); int k = 0; long msStart = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { int loc = r.nextInt(10000); for (int j = 0; j < 1000; j++) { k += sqar[loc][j]; } } long delay = System.currentTimeMillis() - msStart; System.out.println("Scanning with cache friendly lookups took " + delay + " ms"); int[] randLocs = new int[10000]; for (int i = 0; i < 10000; i++) { randLocs[i] = r.nextInt(10000); } k = 0; msStart = System.currentTimeMillis(); for (int j = 0; j < 1000; j++) { for (int i = 0; i < 10000; i++) { k += sqar[randLocs[i]][j]; } } delay = System.currentTimeMillis() - msStart; System.out.println("Scanning with cache UNfriendly lookups took " + delay + " ms"); }
/** * 29% in FactorTable.getValue() 28% in CRFCliqueTree.getCalibratedCliqueTree() 12.6% waiting for * threads * * <p>Single threaded: 15000 ms - 26000 ms Multi threaded: 4500 ms - 7000 ms * * <p>with 8 cpus, 3.3x - 3.7x speedup, around 800% utilization */ public static void benchmarkCRF() { Properties props = new Properties(); props.setProperty("macro", "true"); // use a generic CRF configuration props.setProperty("useIfInteger", "true"); props.setProperty("featureFactory", "edu.stanford.nlp.benchmarks.BenchmarkFeatureFactory"); props.setProperty("saveFeatureIndexToDisk", "false"); CRFClassifier<CoreLabel> crf = new CRFClassifier<CoreLabel>(props); Random r = new Random(42); List<List<CoreLabel>> data = new ArrayList<>(); for (int i = 0; i < 100; i++) { List<CoreLabel> sentence = new ArrayList<>(); for (int j = 0; j < 20; j++) { CoreLabel l = new CoreLabel(); l.setWord("j:" + j); boolean tag = j % 2 == 0 ^ (r.nextDouble() > 0.7); l.set(CoreAnnotations.AnswerAnnotation.class, "target:" + tag); sentence.add(l); } data.add(sentence); } long msStart = System.currentTimeMillis(); crf.train(data); long delay = System.currentTimeMillis() - msStart; System.out.println("Training took " + delay + " ms"); }
public static void benchmarkDatum() { long msStart = System.currentTimeMillis(); Dataset<String, String> data = new Dataset<>(); for (int i = 0; i < 10000; i++) { Random r = new Random(42); Set<String> features = new HashSet<>(); boolean cl = r.nextBoolean(); for (int j = 0; j < 1000; j++) { if (cl && i % 2 == 0) { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":true"); } else { features.add("f:" + j + ":false"); } } else { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":false"); } else { features.add("f:" + j + ":false"); } } } data.add(new BasicDatum<String, String>(features, "target:" + cl)); } long delay = System.currentTimeMillis() - msStart; System.out.println("Dataset construction took " + delay + " ms"); msStart = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { Random r = new Random(42); Set<String> features = new HashSet<>(); boolean cl = r.nextBoolean(); for (int j = 0; j < 1000; j++) { if (cl && i % 2 == 0) { if (r.nextDouble() > 0.3) { } else { } } else { if (r.nextDouble() > 0.3) { } else { } } } } delay = System.currentTimeMillis() - msStart; System.out.println("MultiVector took " + delay + " ms"); }
public static void benchmarkSGD() { Dataset<String, String> data = new Dataset<>(); for (int i = 0; i < 10000; i++) { Random r = new Random(42); Set<String> features = new HashSet<>(); boolean cl = r.nextBoolean(); for (int j = 0; j < 1000; j++) { if (cl && i % 2 == 0) { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":true"); } else { features.add("f:" + j + ":false"); } } else { if (r.nextDouble() > 0.3) { features.add("f:" + j + ":false"); } else { features.add("f:" + j + ":false"); } } } data.add(new BasicDatum<String, String>(features, "target:" + cl)); } LinearClassifierFactory<String, String> factory = new LinearClassifierFactory<>(); factory.setMinimizerCreator( new Factory<Minimizer<DiffFunction>>() { @Override public Minimizer<DiffFunction> create() { return new SGDMinimizer<DiffFunction>(0.1, 100, 0, 1000); } }); long msStart = System.currentTimeMillis(); factory.trainClassifier(data); long delay = System.currentTimeMillis() - msStart; System.out.println("Training took " + delay + " ms"); }
/** * Prints out all matches of a semgrex pattern on a file of dependencies. <br> * Usage:<br> * java edu.stanford.nlp.semgraph.semgrex.SemgrexPattern [args] <br> * See the help() function for a list of possible arguments to provide. */ public static void main(String[] args) throws IOException { Map<String, Integer> flagMap = Generics.newHashMap(); flagMap.put(PATTERN, 1); flagMap.put(TREE_FILE, 1); flagMap.put(MODE, 1); flagMap.put(EXTRAS, 1); flagMap.put(CONLLU_FILE, 1); flagMap.put(OUTPUT_FORMAT_OPTION, 1); Map<String, String[]> argsMap = StringUtils.argsToMap(args, flagMap); args = argsMap.get(null); // TODO: allow patterns to be extracted from a file if (!(argsMap.containsKey(PATTERN)) || argsMap.get(PATTERN).length == 0) { help(); System.exit(2); } SemgrexPattern semgrex = SemgrexPattern.compile(argsMap.get(PATTERN)[0]); String modeString = DEFAULT_MODE; if (argsMap.containsKey(MODE) && argsMap.get(MODE).length > 0) { modeString = argsMap.get(MODE)[0].toUpperCase(); } SemanticGraphFactory.Mode mode = SemanticGraphFactory.Mode.valueOf(modeString); String outputFormatString = DEFAULT_OUTPUT_FORMAT; if (argsMap.containsKey(OUTPUT_FORMAT_OPTION) && argsMap.get(OUTPUT_FORMAT_OPTION).length > 0) { outputFormatString = argsMap.get(OUTPUT_FORMAT_OPTION)[0].toUpperCase(); } OutputFormat outputFormat = OutputFormat.valueOf(outputFormatString); boolean useExtras = true; if (argsMap.containsKey(EXTRAS) && argsMap.get(EXTRAS).length > 0) { useExtras = Boolean.valueOf(argsMap.get(EXTRAS)[0]); } List<SemanticGraph> graphs = Generics.newArrayList(); // TODO: allow other sources of graphs, such as dependency files if (argsMap.containsKey(TREE_FILE) && argsMap.get(TREE_FILE).length > 0) { for (String treeFile : argsMap.get(TREE_FILE)) { System.err.println("Loading file " + treeFile); MemoryTreebank treebank = new MemoryTreebank(new TreeNormalizer()); treebank.loadPath(treeFile); for (Tree tree : treebank) { // TODO: allow other languages... this defaults to English SemanticGraph graph = SemanticGraphFactory.makeFromTree( tree, mode, useExtras ? GrammaticalStructure.Extras.MAXIMAL : GrammaticalStructure.Extras.NONE, true); graphs.add(graph); } } } if (argsMap.containsKey(CONLLU_FILE) && argsMap.get(CONLLU_FILE).length > 0) { CoNLLUDocumentReader reader = new CoNLLUDocumentReader(); for (String conlluFile : argsMap.get(CONLLU_FILE)) { System.err.println("Loading file " + conlluFile); Iterator<SemanticGraph> it = reader.getIterator(IOUtils.readerFromString(conlluFile)); while (it.hasNext()) { SemanticGraph graph = it.next(); graphs.add(graph); } } } for (SemanticGraph graph : graphs) { SemgrexMatcher matcher = semgrex.matcher(graph); if (!(matcher.find())) { continue; } if (outputFormat == OutputFormat.LIST) { System.err.println("Matched graph:"); System.err.println(graph.toString(SemanticGraph.OutputFormat.LIST)); boolean found = true; while (found) { System.err.println( "Matches at: " + matcher.getMatch().value() + "-" + matcher.getMatch().index()); List<String> nodeNames = Generics.newArrayList(); nodeNames.addAll(matcher.getNodeNames()); Collections.sort(nodeNames); for (String name : nodeNames) { System.err.println( " " + name + ": " + matcher.getNode(name).value() + "-" + matcher.getNode(name).index()); } System.err.println(); found = matcher.find(); } } else if (outputFormat == OutputFormat.OFFSET) { if (graph.vertexListSorted().isEmpty()) { continue; } System.out.printf( "+%d %s%n", graph.vertexListSorted().get(0).get(CoreAnnotations.LineNumberAnnotation.class), argsMap.get(CONLLU_FILE)[0]); } } }
public static void main(String[] args) { Options op = new Options(new EnglishTreebankParserParams()); // op.tlpParams may be changed to something else later, so don't use it till // after options are parsed. System.out.println("Currently " + new Date()); System.out.print("Invoked with arguments:"); for (String arg : args) { System.out.print(" " + arg); } System.out.println(); String path = "/u/nlp/stuff/corpora/Treebank3/parsed/mrg/wsj"; int trainLow = 200, trainHigh = 2199, testLow = 2200, testHigh = 2219; String serializeFile = null; int i = 0; while (i < args.length && args[i].startsWith("-")) { if (args[i].equalsIgnoreCase("-path") && (i + 1 < args.length)) { path = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-train") && (i + 2 < args.length)) { trainLow = Integer.parseInt(args[i + 1]); trainHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-test") && (i + 2 < args.length)) { testLow = Integer.parseInt(args[i + 1]); testHigh = Integer.parseInt(args[i + 2]); i += 3; } else if (args[i].equalsIgnoreCase("-serialize") && (i + 1 < args.length)) { serializeFile = args[i + 1]; i += 2; } else if (args[i].equalsIgnoreCase("-tLPP") && (i + 1 < args.length)) { try { op.tlpParams = (TreebankLangParserParams) Class.forName(args[i + 1]).newInstance(); } catch (ClassNotFoundException e) { System.err.println("Class not found: " + args[i + 1]); } catch (InstantiationException e) { System.err.println("Couldn't instantiate: " + args[i + 1] + ": " + e.toString()); } catch (IllegalAccessException e) { System.err.println("illegal access" + e); } i += 2; } else if (args[i].equals("-encoding")) { // sets encoding for TreebankLangParserParams op.tlpParams.setInputEncoding(args[i + 1]); op.tlpParams.setOutputEncoding(args[i + 1]); i += 2; } else { i = op.setOptionOrWarn(args, i); } } // System.out.println(tlpParams.getClass()); TreebankLanguagePack tlp = op.tlpParams.treebankLanguagePack(); Train.sisterSplitters = new HashSet(Arrays.asList(op.tlpParams.sisterSplitters())); // BinarizerFactory.TreeAnnotator.setTreebankLang(tlpParams); PrintWriter pw = op.tlpParams.pw(); Test.display(); Train.display(); op.display(); op.tlpParams.display(); // setup tree transforms Treebank trainTreebank = op.tlpParams.memoryTreebank(); MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank(); // Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank(); // String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/"; // blippTreebank.loadPath(blippPath, "", true); Timing.startTime(); System.err.print("Reading trees..."); testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true)); if (Test.increasingLength) { Collections.sort(testTreebank, new TreeLengthComparator()); } trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true)); Timing.tick("done."); System.err.print("Binarizing trees..."); TreeAnnotatorAndBinarizer binarizer = null; if (!Train.leftToRight) { binarizer = new TreeAnnotatorAndBinarizer(op.tlpParams, op.forceCNF, !Train.outsideFactor(), true); } else { binarizer = new TreeAnnotatorAndBinarizer( op.tlpParams.headFinder(), new LeftHeadFinder(), op.tlpParams, op.forceCNF, !Train.outsideFactor(), true); } CollinsPuncTransformer collinsPuncTransformer = null; if (Train.collinsPunc) { collinsPuncTransformer = new CollinsPuncTransformer(tlp); } TreeTransformer debinarizer = new Debinarizer(op.forceCNF); List<Tree> binaryTrainTrees = new ArrayList<Tree>(); if (Train.selectiveSplit) { Train.splitters = ParentAnnotationStats.getSplitCategories( trainTreebank, Train.tagSelectiveSplit, 0, Train.selectiveSplitCutOff, Train.tagSelectiveSplitCutOff, op.tlpParams.treebankLanguagePack()); if (Train.deleteSplitters != null) { List<String> deleted = new ArrayList<String>(); for (String del : Train.deleteSplitters) { String baseDel = tlp.basicCategory(del); boolean checkBasic = del.equals(baseDel); for (Iterator<String> it = Train.splitters.iterator(); it.hasNext(); ) { String elem = it.next(); String baseElem = tlp.basicCategory(elem); boolean delStr = checkBasic && baseElem.equals(baseDel) || elem.equals(del); if (delStr) { it.remove(); deleted.add(elem); } } } System.err.println("Removed from vertical splitters: " + deleted); } } if (Train.selectivePostSplit) { TreeTransformer myTransformer = new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams); Treebank annotatedTB = trainTreebank.transform(myTransformer); Train.postSplitters = ParentAnnotationStats.getSplitCategories( annotatedTB, true, 0, Train.selectivePostSplitCutOff, Train.tagSelectivePostSplitCutOff, op.tlpParams.treebankLanguagePack()); } if (Train.hSelSplit) { binarizer.setDoSelectiveSplit(false); for (Tree tree : trainTreebank) { if (Train.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } // tree.pennPrint(tlpParams.pw()); tree = binarizer.transformTree(tree); // binaryTrainTrees.add(tree); } binarizer.setDoSelectiveSplit(true); } for (Tree tree : trainTreebank) { if (Train.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTrainTrees.add(tree); } if (Test.verbose) { binarizer.dumpStats(); } List<Tree> binaryTestTrees = new ArrayList<Tree>(); for (Tree tree : testTreebank) { if (Train.collinsPunc) { tree = collinsPuncTransformer.transformTree(tree); } tree = binarizer.transformTree(tree); binaryTestTrees.add(tree); } Timing.tick("done."); // binarization BinaryGrammar bg = null; UnaryGrammar ug = null; DependencyGrammar dg = null; // DependencyGrammar dgBLIPP = null; Lexicon lex = null; // extract grammars Extractor bgExtractor = new BinaryGrammarExtractor(); // Extractor bgExtractor = new SmoothedBinaryGrammarExtractor();//new BinaryGrammarExtractor(); // Extractor lexExtractor = new LexiconExtractor(); // Extractor dgExtractor = new DependencyMemGrammarExtractor(); Extractor dgExtractor = new MLEDependencyGrammarExtractor(op); if (op.doPCFG) { System.err.print("Extracting PCFG..."); Pair bgug = null; if (Train.cheatPCFG) { List allTrees = new ArrayList(binaryTrainTrees); allTrees.addAll(binaryTestTrees); bgug = (Pair) bgExtractor.extract(allTrees); } else { bgug = (Pair) bgExtractor.extract(binaryTrainTrees); } bg = (BinaryGrammar) bgug.second; bg.splitRules(); ug = (UnaryGrammar) bgug.first; ug.purgeRules(); Timing.tick("done."); } System.err.print("Extracting Lexicon..."); lex = op.tlpParams.lex(op.lexOptions); lex.train(binaryTrainTrees); Timing.tick("done."); if (op.doDep) { System.err.print("Extracting Dependencies..."); binaryTrainTrees.clear(); // dgBLIPP = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams,true)); DependencyGrammar dg1 = (DependencyGrammar) dgExtractor.extract( trainTreebank.iterator(), new TransformTreeDependency(op.tlpParams, true)); // dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new // TransformTreeDependency(tlpParams)); // dg = (DependencyGrammar) dgExtractor.extract(new // ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new // TransformTreeDependency(tlpParams)); // dg=new DependencyGrammarCombination(dg1,dgBLIPP,2); // dg = (DependencyGrammar) dgExtractor.extract(binaryTrainTrees); //uses information whether // the words are known or not, discards unknown words Timing.tick("done."); // System.out.print("Extracting Unknown Word Model..."); // UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees); // Timing.tick("done."); System.out.print("Tuning Dependency Model..."); dg.tune(binaryTestTrees); // System.out.println("TUNE DEPS: "+tuneDeps); Timing.tick("done."); } BinaryGrammar boundBG = bg; UnaryGrammar boundUG = ug; GrammarProjection gp = new NullGrammarProjection(bg, ug); // serialization if (serializeFile != null) { System.err.print("Serializing parser..."); LexicalizedParser.saveParserDataToSerialized( new ParserData(lex, bg, ug, dg, Numberer.getNumberers(), op), serializeFile); Timing.tick("done."); } // test: pcfg-parse and output ExhaustivePCFGParser parser = null; if (op.doPCFG) { parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op); } ExhaustiveDependencyParser dparser = ((op.doDep && !Test.useFastFactored) ? new ExhaustiveDependencyParser(dg, lex, op) : null); Scorer scorer = (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp), dparser) : null); // Scorer scorer = parser; BiLexPCFGParser bparser = null; if (op.doPCFG && op.doDep) { bparser = (Test.useN5) ? new BiLexPCFGParser.N5BiLexPCFGParser( scorer, parser, dparser, bg, ug, dg, lex, op, gp) : new BiLexPCFGParser(scorer, parser, dparser, bg, ug, dg, lex, op, gp); } LabeledConstituentEval pcfgPE = new LabeledConstituentEval("pcfg PE", true, tlp); LabeledConstituentEval comboPE = new LabeledConstituentEval("combo PE", true, tlp); AbstractEval pcfgCB = new LabeledConstituentEval.CBEval("pcfg CB", true, tlp); AbstractEval pcfgTE = new AbstractEval.TaggingEval("pcfg TE"); AbstractEval comboTE = new AbstractEval.TaggingEval("combo TE"); AbstractEval pcfgTEnoPunct = new AbstractEval.TaggingEval("pcfg nopunct TE"); AbstractEval comboTEnoPunct = new AbstractEval.TaggingEval("combo nopunct TE"); AbstractEval depTE = new AbstractEval.TaggingEval("depnd TE"); AbstractEval depDE = new AbstractEval.DependencyEval("depnd DE", true, tlp.punctuationWordAcceptFilter()); AbstractEval comboDE = new AbstractEval.DependencyEval("combo DE", true, tlp.punctuationWordAcceptFilter()); if (Test.evalb) { EvalB.initEVALBfiles(op.tlpParams); } // int[] countByLength = new int[Test.maxLength+1]; // use a reflection ruse, so one can run this without needing the tagger // edu.stanford.nlp.process.SentenceTagger tagger = (Test.preTag ? new // edu.stanford.nlp.process.SentenceTagger("/u/nlp/data/tagger.params/wsj0-21.holder") : null); SentenceProcessor tagger = null; if (Test.preTag) { try { Class[] argsClass = new Class[] {String.class}; Object[] arguments = new Object[] {"/u/nlp/data/pos-tagger/wsj3t0-18-bidirectional/train-wsj-0-18.holder"}; tagger = (SentenceProcessor) Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger") .getConstructor(argsClass) .newInstance(arguments); } catch (Exception e) { System.err.println(e); System.err.println("Warning: No pretagging of sentences will be done."); } } for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) { Tree tree = testTreebank.get(tNum); int testTreeLen = tree.yield().size(); if (testTreeLen > Test.maxLength) { continue; } Tree binaryTree = binaryTestTrees.get(tNum); // countByLength[testTreeLen]++; System.out.println("-------------------------------------"); System.out.println("Number: " + (tNum + 1)); System.out.println("Length: " + testTreeLen); // tree.pennPrint(pw); // System.out.println("XXXX The binary tree is"); // binaryTree.pennPrint(pw); // System.out.println("Here are the tags in the lexicon:"); // System.out.println(lex.showTags()); // System.out.println("Here's the tagnumberer:"); // System.out.println(Numberer.getGlobalNumberer("tags").toString()); long timeMil1 = System.currentTimeMillis(); Timing.tick("Starting parse."); if (op.doPCFG) { // System.err.println(Test.forceTags); if (Test.forceTags) { if (tagger != null) { // System.out.println("Using a tagger to set tags"); // System.out.println("Tagged sentence as: " + // tagger.processSentence(cutLast(wordify(binaryTree.yield()))).toString(false)); parser.parse(addLast(tagger.processSentence(cutLast(wordify(binaryTree.yield()))))); } else { // System.out.println("Forcing tags to match input."); parser.parse(cleanTags(binaryTree.taggedYield(), tlp)); } } else { // System.out.println("XXXX Parsing " + binaryTree.yield()); parser.parse(binaryTree.yield()); } // Timing.tick("Done with pcfg phase."); } if (op.doDep) { dparser.parse(binaryTree.yield()); // Timing.tick("Done with dependency phase."); } boolean bothPassed = false; if (op.doPCFG && op.doDep) { bothPassed = bparser.parse(binaryTree.yield()); // Timing.tick("Done with combination phase."); } long timeMil2 = System.currentTimeMillis(); long elapsed = timeMil2 - timeMil1; System.err.println("Time: " + ((int) (elapsed / 100)) / 10.00 + " sec."); // System.out.println("PCFG Best Parse:"); Tree tree2b = null; Tree tree2 = null; // System.out.println("Got full best parse..."); if (op.doPCFG) { tree2b = parser.getBestParse(); tree2 = debinarizer.transformTree(tree2b); } // System.out.println("Debinarized parse..."); // tree2.pennPrint(); // System.out.println("DepG Best Parse:"); Tree tree3 = null; Tree tree3db = null; if (op.doDep) { tree3 = dparser.getBestParse(); // was: but wrong Tree tree3db = debinarizer.transformTree(tree2); tree3db = debinarizer.transformTree(tree3); tree3.pennPrint(pw); } // tree.pennPrint(); // ((Tree)binaryTrainTrees.get(tNum)).pennPrint(); // System.out.println("Combo Best Parse:"); Tree tree4 = null; if (op.doPCFG && op.doDep) { try { tree4 = bparser.getBestParse(); if (tree4 == null) { tree4 = tree2b; } } catch (NullPointerException e) { System.err.println("Blocked, using PCFG parse!"); tree4 = tree2b; } } if (op.doPCFG && !bothPassed) { tree4 = tree2b; } // tree4.pennPrint(); if (op.doDep) { depDE.evaluate(tree3, binaryTree, pw); depTE.evaluate(tree3db, tree, pw); } TreeTransformer tc = op.tlpParams.collinizer(); TreeTransformer tcEvalb = op.tlpParams.collinizerEvalb(); Tree tree4b = null; if (op.doPCFG) { // System.out.println("XXXX Best PCFG was: "); // tree2.pennPrint(); // System.out.println("XXXX Transformed best PCFG is: "); // tc.transformTree(tree2).pennPrint(); // System.out.println("True Best Parse:"); // tree.pennPrint(); // tc.transformTree(tree).pennPrint(); pcfgPE.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); pcfgCB.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); if (op.doDep) { comboDE.evaluate((bothPassed ? tree4 : tree3), binaryTree, pw); tree4b = tree4; tree4 = debinarizer.transformTree(tree4); if (op.nodePrune) { NodePruner np = new NodePruner(parser, debinarizer); tree4 = np.prune(tree4); } // tree4.pennPrint(); comboPE.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } // pcfgTE.evaluate(tree2, tree); pcfgTE.evaluate(tcEvalb.transformTree(tree2), tcEvalb.transformTree(tree), pw); pcfgTEnoPunct.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw); if (op.doDep) { comboTE.evaluate(tcEvalb.transformTree(tree4), tcEvalb.transformTree(tree), pw); comboTEnoPunct.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw); } System.out.println("PCFG only: " + parser.scoreBinarizedTree(tree2b, 0)); // tc.transformTree(tree2).pennPrint(); tree2.pennPrint(pw); if (op.doDep) { System.out.println("Combo: " + parser.scoreBinarizedTree(tree4b, 0)); // tc.transformTree(tree4).pennPrint(pw); tree4.pennPrint(pw); } System.out.println("Correct:" + parser.scoreBinarizedTree(binaryTree, 0)); /* if (parser.scoreBinarizedTree(tree2b,true) < parser.scoreBinarizedTree(binaryTree,true)) { System.out.println("SCORE INVERSION"); parser.validateBinarizedTree(binaryTree,0); } */ tree.pennPrint(pw); } // end if doPCFG if (Test.evalb) { if (op.doPCFG && op.doDep) { EvalB.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree4)); } else if (op.doPCFG) { EvalB.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree2)); } else if (op.doDep) { EvalB.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree3db)); } } } // end for each tree in test treebank if (Test.evalb) { EvalB.closeEVALBfiles(); } // Test.display(); if (op.doPCFG) { pcfgPE.display(false, pw); System.out.println("Grammar size: " + Numberer.getGlobalNumberer("states").total()); pcfgCB.display(false, pw); if (op.doDep) { comboPE.display(false, pw); } pcfgTE.display(false, pw); pcfgTEnoPunct.display(false, pw); if (op.doDep) { comboTE.display(false, pw); comboTEnoPunct.display(false, pw); } } if (op.doDep) { depTE.display(false, pw); depDE.display(false, pw); } if (op.doPCFG && op.doDep) { comboDE.display(false, pw); } // pcfgPE.printGoodBad(); }