@Override public void setup(EvolutionState state, Parameter base) { super.setup(state, base); finalThreshold = state.parameters.getDouble(base.push(P_FINAL_THRESHOLD), null); thresholdDeviation = state.parameters.getDouble(base.push(P_THRESHOLD_DEVIATION), null); thresholdChange = state.parameters.getDouble(base.push(P_THRESHOLD_CHANGE), null); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); F_NOISE = state.parameters.getDouble(base.push(P_FNOISE), null, 0.0); if (F_NOISE < 0.0) state.output.fatal( "Parameter not found, or its value is below 0.0.", base.push(P_FNOISE), null); }
@Override public void setup(EvolutionState state, Parameter base) { // the mean number of generations it will stay on each subpop is roughly 1/changeProb and stdev // is roughly the same as the mean this.changeProb = state.parameters.getDouble(base.push(P_CHANGE_PROB), null); this.currentLeap = -1; baseScore = state.parameters.getString(base.push(P_BASE_SCORE), null); leapScore = state.parameters.getString(base.push(P_LEAP_SCORE), null); }
public void setup(final EvolutionState state, final Parameter base) { // very important, remember this super.setup(state, base); // set up our input -- don't want to use the default base, it's unsafe here input = (DoubleData) state.parameters.getInstanceForParameterEq(base.push(P_DATA), null, DoubleData.class); input.setup(state, base.push(P_DATA)); }
@Override public void setup(EvolutionState state, Parameter base) { super.setup(state, base); this.fitnessIndex = state.parameters.getIntWithDefault( base.push(P_FITNESS_EVAL_INDEX), defaultBase().push(P_FITNESS_EVAL_INDEX), 0); }
@Override public void setup(EvolutionState state, Parameter base) { super.setup(state, base); outFile = state.parameters.getFile(base.push(P_FILE), null); outFile = new File(outFile.getParent(), jobPrefix + outFile.getName()); compress = state.parameters.getBoolean(base.push(P_COMPRESS), null, true); if (compress) { try { taos = new TarArchiveOutputStream( new GZIPOutputStream(new BufferedOutputStream(new FileOutputStream(outFile)))); } catch (IOException ex) { Logger.getLogger(SampleSolutionsStat.class.getName()).log(Level.SEVERE, null, ex); } } if (!compress && !outFile.exists()) { outFile.mkdirs(); } sampleSize = state.parameters.getInt(base.push(P_SAMPLE_SIZE), null); }
@Override public void setup(EvolutionState state, Parameter base) { if (state == null) throw new IllegalArgumentException(this.getClass().getSimpleName() + ": state is null."); if (state.parameters == null) throw new IllegalArgumentException( this.getClass().getSimpleName() + ": state.parameters is null."); if (base == null) throw new IllegalArgumentException(this.getClass().getSimpleName() + ": base is null."); idealFitnessValue = new Option<Double>(state.parameters.getDouble(base.push(P_IDEAL_FITNESS_VALUE), null)); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); String temp; temp = state.parameters.getStringWithDefault(base.push(P_COMPETE_STYLE), null, ""); if (temp.equalsIgnoreCase("single-elim-tournament")) { style = STYLE_SINGLE_ELIMINATION; } else if (temp.equalsIgnoreCase("round-robin")) { style = STYLE_ROUND_ROBIN; } else if (temp.equalsIgnoreCase("rand-1-way")) { style = STYLE_N_RANDOM_COMPETITORS_ONEWAY; } else if (temp.equalsIgnoreCase("rand-2-way")) { style = STYLE_N_RANDOM_COMPETITORS_TWOWAY; } else if (temp.equalsIgnoreCase("rand-2-ways")) { state.output.fatal( "'rand-2-ways' is no longer a valid style name: use 'rand-2-way'", base.push(P_COMPETE_STYLE), null); } else { state.output.fatal( "Incorrect value for parameter. Acceptable values: " + "single-elim-tournament, round-robin, rand-1-way, rand-2-way", base.push(P_COMPETE_STYLE)); } if (style == STYLE_N_RANDOM_COMPETITORS_ONEWAY || style == STYLE_N_RANDOM_COMPETITORS_TWOWAY) { groupSize = state.parameters.getInt(base.push(P_GROUP_SIZE), null, 1); if (groupSize < 1) { state.output.fatal("Incorrect value for parameter", base.push(P_GROUP_SIZE)); } } allowOverEvaluation = state.parameters.getBoolean(base.push(P_OVER_EVAL), null, false); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); // we use size distributions -- did the user specify any? if (!canPick()) state.output.fatal( "PTC2 needs a distribution of tree sizes to pick from. You can do this by either setting a distribution (with " + P_NUMSIZES + ") or with " + P_MINSIZE + " and " + P_MAXSIZE + ".", base, def); maxDepth = state.parameters.getInt(base.push(P_MAXDEPTH), def.push(P_MAXDEPTH), 1); if (maxDepth < 1) state.output.fatal("Maximum depth must be >= 1", base.push(P_MAXDEPTH), def.push(P_MAXDEPTH)); }
/** Sets up parameters. */ public void setup(final EvolutionState state, final Parameter base) { if (!(state instanceof EvolutionAgent)) state.output.fatal("DRMStatistics requires an EvolutionAgent", null, null); EvolutionAgent agent = (EvolutionAgent) state; super.setup(state, base); frequency = state.parameters.getIntWithDefault(base.push(P_FREQUENCY), null, 1); store_best = state.parameters.getBoolean(base.push(P_STORE_BEST), null, true); // use_collective = state.parameters.getBoolean(base.push(P_COLLECTIVE),null,true); // If we are root, set up the base filename and the logtable if (agent.iamroot) { // I'm not sure that outputting everything to the current directory is right basefilename = System.getProperty("user.dir") + File.separator + state.parameters.getFile(base.push(P_STATISTICS_FILE), null).getName(); logtable = new Hashtable(); } else defaultlog = -3; // Maybe can be useful for recognizing it as a non valid log creationtime = System.currentTimeMillis(); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); double val = state.parameters.getDouble(base.push(P_SIZE), def.push(P_SIZE), 1.0); if (val < 1.0) state.output.fatal("Tournament size must be >= 1.", base.push(P_SIZE), def.push(P_SIZE)); else if (val > 1 && val < 2) // pick with probability { size = 2; probabilityOfSelection = (val / 2); } else if (val != (int) val) // it's not an integer state.output.fatal( "If >= 2, Tournament size must be an integer.", base.push(P_SIZE), def.push(P_SIZE)); else { size = (int) val; probabilityOfSelection = 1.0; } val = state.parameters.getDouble(base.push(P_SIZE2), def.push(P_SIZE2), 1.0); if (val < 1.0) state.output.fatal("Tournament size2 must be >= 1.", base.push(P_SIZE2), def.push(P_SIZE2)); else if (val > 1 && val < 2) // pick with probability { size2 = 2; probabilityOfSelection2 = (val / 2); } else if (val != (int) val) // it's not an integer state.output.fatal( "If >= 2, Tournament size2 must be an integer.", base.push(P_SIZE2), def.push(P_SIZE2)); else { size2 = (int) val; probabilityOfSelection2 = 1.0; } doLengthFirst = state.parameters.getBoolean(base.push(P_DOLENGTHFIRST), def.push(P_DOLENGTHFIRST), true); pickWorst = state.parameters.getBoolean(base.push(P_PICKWORST), def.push(P_PICKWORST), false); pickWorst2 = state.parameters.getBoolean(base.push(P_PICKWORST2), def.push(P_PICKWORST2), false); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); // create the arrays minGenes = new double[genomeSize]; maxGenes = new double[genomeSize]; // LOADING GLOBAL MIN/MAX GENES double minGene = state.parameters.getDoubleWithDefault(base.push(P_MINGENE), def.push(P_MINGENE), 0); double maxGene = state.parameters.getDouble(base.push(P_MAXGENE), def.push(P_MAXGENE), minGene); if (maxGene < minGene) state.output.fatal( "FloatVectorSpecies must have a default min-gene which is <= the default max-gene", base.push(P_MAXGENE), def.push(P_MAXGENE)); for (int x = 0; x < genomeSize; x++) { minGenes[x] = minGene; maxGenes[x] = maxGene; } // LOADING SEGMENTS // Set number of segments to 0 by default int numSegments = 0; // Now check to see if segments of genes (genes having the same min and // max values) exist if (state.parameters.exists(base.push(P_NUM_SEGMENTS), def.push(P_NUM_SEGMENTS))) { numSegments = state.parameters.getIntWithDefault( base.push(P_NUM_SEGMENTS), def.push(P_NUM_SEGMENTS), 0); if (numSegments == 0) state.output.warning( "The number of genome segments has been defined to be equal to 0.\n" + "Hence, no genome segments will be defined.", base.push(P_NUM_SEGMENTS), def.push(P_NUM_SEGMENTS)); else if (numSegments < 0) state.output.fatal( "Invalid number of genome segments: " + numSegments + "\nIt must be a nonnegative value.", base.push(P_NUM_SEGMENTS), def.push(P_NUM_SEGMENTS)); // read the type of segment definition using the default start value String segmentType = state.parameters.getStringWithDefault( base.push(P_SEGMENT_TYPE), def.push(P_SEGMENT_TYPE), P_SEGMENT_START); if (segmentType.equalsIgnoreCase(P_SEGMENT_START)) initializeGenomeSegmentsByStartIndices(state, base, def, numSegments, minGene, maxGene); else if (segmentType.equalsIgnoreCase(P_SEGMENT_END)) initializeGenomeSegmentsByEndIndices(state, base, def, numSegments, minGene, maxGene); else state.output.fatal( "Invalid specification of genome segment type: " + segmentType + "\nThe " + P_SEGMENT_TYPE + " parameter must have the value of " + P_SEGMENT_START + " or " + P_SEGMENT_END, base.push(P_SEGMENT_TYPE), def.push(P_SEGMENT_TYPE)); } // LOADING PER-GENE VALUES boolean foundStuff = false; boolean warnedMin = false; boolean warnedMax = false; for (int x = 0; x < genomeSize; x++) { if (!state.parameters.exists( base.push(P_MINGENE).push("" + x), def.push(P_MINGENE).push("" + x))) { if (foundStuff && !warnedMin) { state.output.warning( "FloatVectorSpecies has missing min-gene values for some genes.\n" + "The first one is gene #" + x + ".", base.push(P_MINGENE).push("" + x), def.push(P_MINGENE).push("" + x)); warnedMin = true; } } else { minGenes[x] = state.parameters.getDoubleWithDefault( base.push(P_MINGENE).push("" + x), def.push(P_MINGENE).push("" + x), minGene); foundStuff = true; } if (!state.parameters.exists( base.push(P_MAXGENE).push("" + x), def.push(P_MAXGENE).push("" + x))) { if (foundStuff && !warnedMax) { state.output.warning( "FloatVectorSpecies has missing max-gene values for some genes.\n" + "The first one is gene #" + x + ".", base.push(P_MAXGENE).push("" + x), def.push(P_MAXGENE).push("" + x)); warnedMax = true; } } else { maxGenes[x] = state.parameters.getDoubleWithDefault( base.push(P_MAXGENE).push("" + x), def.push(P_MAXGENE).push("" + x), maxGene); foundStuff = true; } } // VERIFY for (int x = 0; x < genomeSize; x++) { if (maxGenes[x] != maxGenes[x]) // uh oh, NaN state.output.fatal("FloatVectorSpecies found that max-gene[" + x + "] is NaN"); if (minGenes[x] != minGenes[x]) // uh oh, NaN state.output.fatal("FloatVectorSpecies found that min-gene[" + x + "] is NaN"); if (maxGenes[x] < minGenes[x]) state.output.fatal( "FloatVectorSpecies must have a min-gene[" + x + "] which is <= the max-gene[" + x + "]"); // check to see if these longs are within the data type of the particular individual if (!inNumericalTypeRange(minGenes[x])) state.output.fatal( "This FloatvectorSpecies has a prototype of the kind: " + i_prototype.getClass().getName() + ", but doesn't have a min-gene[" + x + "] value within the range of this prototype's genome's data types"); if (!inNumericalTypeRange(maxGenes[x])) state.output.fatal( "This FloatvectorSpecies has a prototype of the kind: " + i_prototype.getClass().getName() + ", but doesn't have a max-gene[" + x + "] value within the range of this prototype's genome's data types"); } /// OTHER SETUP String mtype = state.parameters.getStringWithDefault(base.push(P_MUTATIONTYPE), null, V_RESET_MUTATION); mutationType = C_RESET_MUTATION; if (mtype == null) state.output.warning( "No mutation type given for VectorSpecies, assuming 'reset' mutation", base.push(P_MUTATIONTYPE), def.push(P_MUTATIONTYPE)); else if (mtype.equalsIgnoreCase(V_RESET_MUTATION)) mutationType = C_RESET_MUTATION; // redundant else if (mtype.equalsIgnoreCase(V_GAUSS_MUTATION)) mutationType = C_GAUSS_MUTATION; else state.output.fatal( "FloatVectorSpecies given a bad mutation type: " + mtype, base.push(P_MUTATIONTYPE), def.push(P_MUTATIONTYPE)); if (mutationType == C_GAUSS_MUTATION) { double gaussMutationStdev = state.parameters.getDouble(base.push(P_STDEV), def.push(P_STDEV), 0); if (gaussMutationStdev <= 0) state.output.fatal( "If it's going to use gaussian mutation, FloatvectorSpecies must have a strictly positive standard deviation", base.push(P_STDEV), def.push(P_STDEV)); gaussMutationStdevs = new double[genomeSize]; double defaultRange = maxGene - minGene; double defaultStdev = gaussMutationStdev; double defaultStdevOverRange = defaultStdev / defaultRange; for (int x = 0; x < genomeSize; x++) { gaussMutationStdevs[x] = defaultStdevOverRange * (maxGene(x) - minGene((x))); } outOfRangeRetries = state.parameters.getIntWithDefault( base.push(P_OUTOFBOUNDS_RETRIES), def.push(P_OUTOFBOUNDS_RETRIES), outOfRangeRetries); if (outOfRangeRetries < 0) { state.output.fatal( "If it's going to use gaussian mutation, FloatvectorSpecies must have a positive number of out-of-bounds retries or 0 (for don't give up)", base.push(P_OUTOFBOUNDS_RETRIES), def.push(P_OUTOFBOUNDS_RETRIES)); } } /* //Debugging for(int i = 0; i < minGenes.length; i++) System.out.println("Min: " + minGenes[i] + ", Max: " + maxGenes[i]); */ }
/** Sets up all the GEPSymbolSet symbols, loading them from the parameter file. */ public void setup( final EvolutionState state, final Parameter base, final Parameter def, GEPSpecies species) { // Name of file with the terminal (variable) definitions and training values String terminalFilename; // Name of file with the test data values if specified String testingTerminalFilename; // keep track of the maximum arity of any function maxArity = 0; // What's my name? Don't really use this at this time ... name = state.parameters.getString(base.push(P_NAME), def.push(P_NAME)); if (name == null || name.equals("")) state.output.warning( "No name was given for this GEP symbol set...not required at this time.", base.push(P_NAME), def.push(P_NAME)); // How many functions do I have? numberOfFunctions = state.parameters.getInt(base.push(P_FUNCTIONSIZE), def.push(P_FUNCTIONSIZE), 1); numberOfSymbols = numberOfFunctions; // How many terminals do I have? Check for a data file first ... // if time series problem type and using raw time series data then // number of terminals will be specified in the embedding dimension value // provided in the parameter file // else if a file specified // get the 1st line of the file and count the fields in it (#terminals is number of fields // minus // the number of chromosomes/dependent variables) // else // use the number of terminals specified in the parameter file terminalFilename = state.parameters.getStringWithDefault( base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME), ""); testingTerminalFilename = state.parameters.getStringWithDefault( base.push(P_TESTINGTERMINALFILENAME), def.push(P_TESTINGTERMINALFILENAME), ""); String terminalSymbolsfromFile[] = null; CsvReader terminalFileCSV = null; CsvReader testingTerminalFileCSV = null; // Are we processing raw time series data? boolean timeseriesWithRawDataValues = species.problemType == GEPSpecies.PT_TIMESERIES && species.timeseriesEmbeddingDimension > 0; if (!terminalFilename.equals("")) { String defaultTerminalFileSeparator = ","; // default field separator is comma try { // allow for gzip files .... end with .gz or .gzip\ if (terminalFilename.endsWith(".gz") || terminalFilename.endsWith(".gzip")) { terminalFileCSV = new CsvReader( (InputStream) (new GZIPInputStream(new FileInputStream(terminalFilename))), Charset.forName("ISO-8859-1")); // set terminal file name to be the one with gzip or gz removed from the end if (terminalFilename.endsWith(".gz")) terminalFilename = terminalFilename.substring(0, terminalFilename.length() - 3); else terminalFilename = terminalFilename.substring(0, terminalFilename.length() - 5); } else terminalFileCSV = new CsvReader(terminalFilename); } catch (FileNotFoundException e) { state.output.fatal( "The file with terminal definitions and/or values (" + terminalFilename + ") could not be found", base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); } catch (IOException e) { state.output.fatal( "The file with terminal definitions and/or values (" + terminalFilename + ") could not be found or the expected GZIP file could nor be opened", base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); } // if filename has extension .dat it is space delimited, if .csv (or anything else // for that matter) it is comma delimited // (separator can still be changed with the terminalfileseparator parameter) if (terminalFilename.endsWith(".dat")) defaultTerminalFileSeparator = "space"; // if using a file for the terminals and their values then check for a non-default separator String terminalFileSeparator = state.parameters.getStringWithDefault( base.push(P_TERMINALFILESEPARATOR), def.push(P_TERMINALFILESEPARATOR), defaultTerminalFileSeparator); if (terminalFileSeparator.toLowerCase().equals("comma")) terminalFileSeparator = ","; else if (terminalFileSeparator == "\\t" || terminalFileSeparator.toLowerCase().equals("tab")) terminalFileSeparator = "\t"; else if (terminalFileSeparator == "space") terminalFileSeparator = " "; terminalFileCSV.setDelimiter(terminalFileSeparator.charAt(0)); // let's check for a testing data file at this time as well .. if no file for // names and training data no need to worry about this one. if (!testingTerminalFilename.equals("")) { try { // allow for gzip files .... end with .gz or .gzip\ if (testingTerminalFilename.endsWith(".gz") || testingTerminalFilename.endsWith(".gzip")) testingTerminalFileCSV = new CsvReader( (InputStream) (new GZIPInputStream(new FileInputStream(testingTerminalFilename))), Charset.forName("ISO-8859-1")); else testingTerminalFileCSV = new CsvReader(testingTerminalFilename); testingTerminalFileCSV.setDelimiter(terminalFileSeparator.charAt(0)); } catch (FileNotFoundException e) { state.output.fatal( "The file with testing data values (" + testingTerminalFilename + ") could not be found", base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); } catch (IOException e) { state.output.fatal( "The file with testing data values (" + terminalFilename + ") could not be found or the expected GZIP file could nor be opened", base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); } } } if (timeseriesWithRawDataValues) numberOfTerminals = species.timeseriesEmbeddingDimension; else if (terminalFileCSV != null) { // get the terminal symbols for the independent and dependent variables try { terminalFileCSV.readHeaders(); terminalSymbolsfromFile = terminalFileCSV.getHeaders(); } catch (IOException e) { state.output.fatal( "The file with variable (terminal) definitions and values (" + terminalFilename + ") failed to read the headers" + e, base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); } // 1 less for each dependent variable (number of chromosomes) at the end numberOfTerminals = terminalSymbolsfromFile.length - species.numberOfChromosomes; if (numberOfTerminals < 1) state.output.fatal( "The file with terminal definitions and data values (" + terminalFilename + ") has no independent variables specified in record 1", base.push(P_TERMINALFILENAME), def.push(P_TERMINALFILENAME)); // if using a file for the terminals and their values then check for a non-default separator } else { numberOfTerminals = state.parameters.getInt(base.push(P_TERMINALSIZE), def.push(P_TERMINALSIZE), 1); } numberOfSymbols += numberOfTerminals; if (numberOfSymbols < 1) state.output.error( "The GEPSymbolSet \"" + name + "\" have at least 1 terminal symbol defined.", base.push(P_TERMINALSIZE), def.push(P_TERMINALSIZE)); // add a special Symbol for constants if we are using them ... it will be added to the // end of the array of symbols! if (species.useConstants) { numberOfTerminals++; // special constant terminal numberOfSymbols++; } symbols = new GEPSymbol[numberOfSymbols]; int numberOfSymbolsWithoutConstantSymbol = numberOfSymbols; if (species.useConstants) // add the constant terminal symbol to the end { symbols[numberOfSymbols - 1] = (GEPSymbol) (new GEPConstantTerminalSymbol()); symbols[numberOfSymbols - 1].id = numberOfSymbols - 1; numberOfSymbolsWithoutConstantSymbol--; } Parameter pTerminal = base.push(P_TERMINAL); Parameter pdefTerminal = def.push(P_TERMINAL); Parameter pFunction = base.push(P_FUNCTION); Parameter pdefFunction = def.push(P_FUNCTION); // create hashtable of names of terminals and hash table with names of functions // so we can easily check that they are not duplicates Hashtable functionHT = new Hashtable(); Hashtable terminalHT = new Hashtable(); // process the functions for (int x = 0; x < numberOfFunctions; x++) { Parameter pp = pFunction.push("" + x); Parameter ppdef = pdefFunction.push("" + x); String function = state.parameters.getStringWithDefault(pp, ppdef, ""); if (function.equals("")) // no name for the function state.output.fatal("Invalid function specifier: '" + function + "'", pp, ppdef); // make sure not specifying the same function more than once if (functionHT.get(function) != null) state.output.fatal( "Function '" + function + "' was specified more than once in list of function symbols"); else functionHT.put(function, function); GEPFunctionSymbol fs = null; try { Class classDefinition = Class.forName(LOCATION_OF_FUNCTION_CLASSES + "." + function); fs = (GEPFunctionSymbol) classDefinition.newInstance(); } catch (InstantiationException e) { state.output.fatal( "Unable to create GEPFunctionSymbol class for function '" + function + "'. " + e); } catch (IllegalAccessException e) { state.output.fatal( "Unable to create GEPFunctionSymbol class for function '" + function + "' " + e); } catch (ClassNotFoundException e) { state.output.fatal( "Unable to create GEPFunctionSymbol class for function '" + function + "' " + e); } // if using a logical function must be a logical problem if (fs.isLogicalFunction() && (species.problemType != GEPSpecies.PT_LOGICAL)) state.output.fatal( "Can only use logical functions with a logical problem type. Function " + function + " is a logical function.", pp, ppdef); // if using a numerical function must be an non logical problem if (!fs.isLogicalFunction() && (species.problemType == GEPSpecies.PT_LOGICAL)) state.output.fatal( "Can only use logical functions with a non logical problem type. Function " + function + " is a numerical function.", pp, ppdef); symbols[x] = (GEPSymbol) fs; // symbols[x].setup(state, base); if (fs.arity < 1) state.output.fatal("Arity must be > 0 for a GEPTerminalSymbol)", pp, ppdef); symbols[x].id = x; int weight = state.parameters.getInt(pp.push(P_FUNCTIONWEIGHT), ppdef.push(P_FUNCTIONWEIGHT), 1); if (weight < 1) { state.output.warning( "Weight for GEP Function must be > 0; defaulting to 1)", pp.push(P_FUNCTIONWEIGHT), ppdef.push(P_FUNCTIONWEIGHT)); weight = 1; } symbols[x].weight = weight; if (symbols[x].arity > maxArity) maxArity = symbols[x].arity; } // process the terminals ... defined by default for timeseries data, in the // CSV file if specified and not timeseries, or in the params file if neither of those. for (int x = numberOfFunctions; x < numberOfSymbolsWithoutConstantSymbol; x++) { // load the terminal symbols int index = x - numberOfFunctions; String terminal = ""; if (timeseriesWithRawDataValues) { // terminals get default names v0, v1, v2, v3, ... vn-1 terminal = "v" + index; } else if (terminalFileCSV == null) // terminals defined in param file { Parameter pp = pTerminal.push("" + index); Parameter ppdef = pdefTerminal.push("" + index); terminal = state.parameters.getStringWithDefault(pp, ppdef, ""); } else { // terminals defined in CSV file terminal = terminalSymbolsfromFile[index]; } if (terminal.equals("")) // no name for the terminal state.output.fatal("Invalid terminal specifier: '" + terminal + "' for terminal # " + index); // make sure not specifying the same function more than once if (terminalHT.get(terminal) != null) state.output.fatal( "Terminal symbol (indep var) '" + terminal + "' was specified more than once in list of terminal symbols (independent variables)"); else terminalHT.put(terminal, terminal); GEPTerminalSymbol ts = new GEPTerminalSymbol(terminal, this); symbols[x] = (GEPSymbol) ts; // symbols[x].setup(state, base); if (ts.arity != 0) // cannot happen state.output.fatal("Arity must be exactly 0 for a GEPTerminalSymbol)"); symbols[x].id = x; symbols[x].weight = 1; // all Terminal symbols have weight of 1 } // must be at least 1 Terminal symbol in the SymbolSet. // If not then the user didn't specify the terminals in the param file or in the data file if (numberOfTerminals < 1) state.output.fatal( "Must be at least one Terminal Symbol in the set of GEPSymbols\n" + "Either did not specify the terminal symbols in the param file or\n" + "did not specify the appropriate data file with the terminals specified in the first line."); // collect the id's (indices) of the terminal and function symbols that // are in the set of symbols terminals = new int[numberOfTerminals]; int terminalNum = 0; functions = new int[numberOfFunctions]; int functionNum = 0; for (int x = 0; x < numberOfSymbols; x++) { if (symbols[x] instanceof GEPConstantTerminalSymbol) terminals[terminalNum++] = x; else if (symbols[x] instanceof GEPTerminalSymbol) terminals[terminalNum++] = x; else if (symbols[x] instanceof GEPFunctionSymbol) functions[functionNum++] = x; } // collect the weights for symbols and terminals and normalize and cumulate them. // Then we can use these arrays to pick appropriate symbols or terminals according to // their weights ... using the RandomChooser.PickFromDistribution cumulativeNormalizedSymbolWeights = new float[numberOfSymbols]; cumulativeNormalizedTerminalWeights = new float[numberOfTerminals]; cumulativeNormalizedFunctionWeights = new float[numberOfFunctions]; int j = 0, k = 0; for (int i = 0; i < numberOfSymbols; i++) { float weight = (float) (symbols[i].weight); cumulativeNormalizedSymbolWeights[i] = weight; if (symbols[i] instanceof GEPTerminalSymbol || symbols[i] instanceof GEPConstantTerminalSymbol) cumulativeNormalizedTerminalWeights[j++] = weight; if (symbols[i] instanceof GEPFunctionSymbol) cumulativeNormalizedFunctionWeights[k++] = weight; } RandomChoice.organizeDistribution(cumulativeNormalizedSymbolWeights); RandomChoice.organizeDistribution(cumulativeNormalizedTerminalWeights); RandomChoice.organizeDistribution(cumulativeNormalizedFunctionWeights); // use the 2/3 rule if fewer functions else the 1/2 rule (don't count the constant // terminal here) if (numberOfFunctions < (numberOfTerminals - (species.useConstants ? 1 : 0))) probabilityOfChoosingFunction = 2.0 / 3.0; else probabilityOfChoosingFunction = 0.5; // ... and finally get the training and testing data values for the terminals and dependent // variable // and put them into the Terminal instances (creating a 'special' Terminal Symbol to // hold the dependent variable training and testing values) // If this is a time series problem AND we are using the raw time series data then // we named the terminals v1, v2, ..., nn where n is the number of independent // variables as specified in the embedding dimension (which) was used to // determine the number of terminals. But we have to process the time series data // to get the values for each terminal ... get the raw data from the CSV file // if specified or from the user program ... then process it into rows of data // representing the independent variables and the dependent variable. // // timeseries-delay -- if 1 uses each time series value, if 2 uses every other one, etc. // timeseries-embeddingdimension -- determines the number of timeseries points to use // as independent variables when transforming the set of time series data. Another // data point is used as the dependent variable value. So the time series 'raw' data // consisting of a list of single values is processed by splitting the data into // groups (rows) of size embeddingdimension+1. From the end of the time series data // embeddingdimension+1 values are chosen (if delay is 1 all values are chosen, if // 2 every other one is chosen). The last value is the independent variable value. // Then the next row is selected by moving 'delay' // values from the end and chosing embeddingdimension+1 values. This is repeated // until no more sets of size embeddingdimension+1 can be chosen. If this produces // n sets of data then testingprediction of them are used for testing and // (n - testingpredictions) are used for training. // // So if we had the data: // 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 // and delay was 1 and embeddingdimension was 4 then we'd process the set into // the following 17 data sets. If testingpredictions was 6 then the 1st 11 // would be used for training and the last 6 for testing // iv1 iv2 iv3 iv4 dv // 1 2 3 4 5 // 2 3 4 5 6 // 3 4 5 6 7 // . . . // 14 15 16 17 18 // 15 16 17 18 19 // 16 17 18 19 20 // 17 18 19 20 21 // If delay was 2 then 7 sets would be formed as: // iv1 iv2 iv3 iv4 dv // 1 3 5 7 9 // 3 5 7 9 11 // . . . // 9 11 13 15 17 // 11 13 15 17 19 // 13 15 17 19 21 // timeseries-testingpredictions -- specifies the number of sets of data to devote to testing if (timeseriesWithRawDataValues) { GEPDependentVariable.symbol = "dependentVariable"; double rawTimeSeriesValues[] = null; if (terminalFileCSV == null) rawTimeSeriesValues = ((GEPProblem) state.evaluator.p_problem).getTimeSeriesDataValues(); else rawTimeSeriesValues = getRawTimeSeriesValuesFromCSVfile(state, terminalFileCSV); if (rawTimeSeriesValues == null) state.output.fatal("Unable to get time series data values from User Program or CSV file"); Vector values[] = processRawTimeSeriesValues(state, species, rawTimeSeriesValues); // have an array of vectors; 1 vector for each indep variable and the dep variable(s) for (int i = 0; i < values.length; i++) { // get the values for training ... and testing (specified by timeseriesTestingPredictions) int sizeOfTrainingData = values[i].size() - species.timeseriesTestingPredictions; double v[] = new double[sizeOfTrainingData]; double testingV[] = new double[species.timeseriesTestingPredictions]; for (int m = 0; m < v.length; m++) v[m] = ((Double) values[i].elementAt(m)).doubleValue(); for (int n = 0; n < testingV.length; n++) testingV[n] = ((Double) values[i].elementAt(n + sizeOfTrainingData)).doubleValue(); int depVarIndex = i - values.length + species.numberOfChromosomes; if (depVarIndex >= 0) // last column(s) in file is(are) the dependent variable(s) { GEPDependentVariable.trainingData.setValues(v, depVarIndex); GEPDependentVariable.testingData.setValues(testingV, depVarIndex); } else { ((GEPTerminalSymbol) symbols[numberOfFunctions + i]).setTrainingValues(v); ((GEPTerminalSymbol) symbols[numberOfFunctions + i]).setTestingValues(testingV); } } } // else If there is a file with the terminals and dep variable(s) use this else ask for // the values from the User Program (problem). else if (terminalFileCSV != null) // terminals defined in CSV file { GEPDependentVariable.symbol = terminalSymbolsfromFile[terminalSymbolsfromFile.length - 1]; // get all the values into an array of vectors (each vector holds the values for a // single terminal (dep or indep variable) Vector values[] = new Vector[terminalSymbolsfromFile.length]; for (int i = 0; i < terminalSymbolsfromFile.length; i++) values[i] = new Vector(); try { while (terminalFileCSV.readRecord()) { for (int i = 0; i < terminalSymbolsfromFile.length; i++) values[i].add(terminalFileCSV.get(i)); } } catch (IOException e) { state.output.fatal( "The file with terminal definitions/values failed when reading records. " + e); } for (int i = 0; i < terminalSymbolsfromFile.length; i++) { double v[] = new double[values[i].size()]; for (int m = 0; m < v.length; m++) try { v[m] = Double.parseDouble((String) values[i].elementAt(m)); } catch (Exception e) { state.output.fatal( "Failed trying to read a training data set value. The field is supposed to be a number but was the string '" + (String) values[i].elementAt(m) + "'.\n" + e); } int jj = terminalSymbolsfromFile.length - species.numberOfChromosomes; if (i >= jj) // last column(s) in file is(are) the dependent variable(s) GEPDependentVariable.trainingData.setValues(v, i - jj); else ((GEPTerminalSymbol) symbols[numberOfFunctions + i]).setTrainingValues(v); } // get the testing data as well if a file was specified if (testingTerminalFileCSV != null) // testing data defined in CSV file { // get all the values into an array of vectors (each vector holds the values for a // single terminal (dep or indep variable) Vector testingValues[] = new Vector[terminalSymbolsfromFile.length]; for (int i = 0; i < terminalSymbolsfromFile.length; i++) testingValues[i] = new Vector(); try { while (testingTerminalFileCSV.readRecord()) { for (int i = 0; i < terminalSymbolsfromFile.length; i++) testingValues[i].add(testingTerminalFileCSV.get(i)); } } catch (IOException e) { state.output.fatal( "The file with testing data values failed when reading records. " + "\nMake sure the file has the same column separators as the testing data file." + "\nAlso check that it has the same as the number of columns as the testing file" + e); } for (int i = 0; i < terminalSymbolsfromFile.length; i++) { double v[] = new double[testingValues[i].size()]; for (int m = 0; m < v.length; m++) try { v[m] = Double.parseDouble((String) testingValues[i].elementAt(m)); } catch (Exception e) { state.output.fatal( "Failed trying to read a testing data set value. The field is supposed to be a number but was the string '" + (String) testingValues[i].elementAt(m) + "'.\n" + e); } int jj = terminalSymbolsfromFile.length - species.numberOfChromosomes; if (i >= jj) // last column(s) in file is(are) the dependent variable(s) GEPDependentVariable.testingData.setValues(v, i - jj); else ((GEPTerminalSymbol) symbols[numberOfFunctions + i]).setTestingValues(v); } } } // else terminals were defined in the param file and no CSV file // defined so .... ask User Problem for the values, training and testing (if there are any) else { GEPDependentVariable.symbol = "dependentVariable"; GEPProblem prob = (GEPProblem) state.evaluator.p_problem; double vals[] = null; for (int i = numberOfFunctions; i < numberOfSymbolsWithoutConstantSymbol; i++) { GEPTerminalSymbol ts = (GEPTerminalSymbol) symbols[i]; vals = prob.getDataValues(ts.symbol); if (vals == null) state.output.fatal( "Expecting user problem (GEPProblem/ProblemForm) to supply training data values for terminal symbol '" + ts + "'."); ts.setTrainingValues(vals); vals = prob.getTestingDataValues(ts.symbol); if (vals != null) // don't have to supply testing data ts.setTestingValues(vals); } // if just one dep var then ask user by requesting with getdataValues("dependentVariable") // and if more than one dep var (more than 1 chromosome) then ask for dep variables // with getDataValues("dependentVariable0"), getDataValues("dependentVariable1"), ... for (int i = 0; i < species.numberOfChromosomes; i++) { String depVarSym = GEPDependentVariable.symbol; if (species.numberOfChromosomes > 1) depVarSym = depVarSym + i; vals = prob.getDataValues(depVarSym); if (vals == null) state.output.fatal( "Expecting user problem (GEPProblem/ProblemForm) to supply training data values for dependent variable '" + depVarSym + "'."); GEPDependentVariable.trainingData.setValues(vals, i); vals = prob.getTestingDataValues(depVarSym); if (vals != null) // don't have to supply testing data GEPDependentVariable.testingData.setValues(vals, i); } } // Some checking of data values to ensure they meet the requirements for the various problem // types. // For all problem types need to make sure all indep vars and the dep var have the same number // of values! int numValues = GEPDependentVariable.trainingData.values[0].length; for (int i = numberOfFunctions; i < numberOfSymbolsWithoutConstantSymbol; i++) if (((GEPTerminalSymbol) symbols[i]).trainingValues.length != numValues) state.output.fatal( "Must have same number of values for all independent variables and the dependent variable." + "/nNumber of values for Dependent Variable is: " + numValues + "/nNumber of values for Independent Variable '" + symbols[i].symbol + "' is: " + ((GEPTerminalSymbol) symbols[i]).trainingValues.length); // For Classification and logical problems all dependent variable values must be either 0 or 1 if (species.problemType == GEPSpecies.PT_CLASSIFICATION || species.problemType == GEPSpecies.PT_LOGICAL) { double dvVals[] = GEPDependentVariable.trainingData.values[0]; for (int i = 0; i < numValues; i++) if (dvVals[i] != 0.0 && dvVals[i] != 1.0) state.output.fatal( "For classification/logical problems all dependent variable values must be either 1 or 0.\nFound value " + dvVals[i] + " at index " + i + "in the values."); } // For Logical problems all independent variable values must be 0 or 1 if (species.problemType == GEPSpecies.PT_LOGICAL) { // for each indep variable symbol for (int i = numberOfFunctions; i < numberOfSymbolsWithoutConstantSymbol; i++) { double ivVals[] = ((GEPTerminalSymbol) symbols[i]).trainingValues; for (int m = 0; m < numValues; m++) if (ivVals[m] != 0.0 && ivVals[m] != 1.0) state.output.fatal( "For logical problems all independent variable values must be either 1 or 0.\nFound value " + ivVals[m] + " at index '" + m + "' in the variable '" + ((GEPTerminalSymbol) symbols[i]).symbol + "'."); } } state.output.exitIfErrors(); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); Parameter p = base.push(P_NODESELECTOR).push("0"); Parameter d = def.push(P_NODESELECTOR).push("0"); nodeselect1 = (GPNodeSelector) (state.parameters.getInstanceForParameter(p, d, GPNodeSelector.class)); nodeselect1.setup(state, p); p = base.push(P_NODESELECTOR).push("1"); d = def.push(P_NODESELECTOR).push("1"); if (state.parameters.exists(p, d) && state.parameters.getString(p, d).equals(V_SAME)) // can't just copy it this time; the selectors // use internal caches. So we have to clone it no matter what nodeselect2 = (GPNodeSelector) (nodeselect1.clone()); else { nodeselect2 = (GPNodeSelector) (state.parameters.getInstanceForParameter(p, d, GPNodeSelector.class)); nodeselect2.setup(state, p); } numTries = state.parameters.getInt(base.push(P_NUM_TRIES), def.push(P_NUM_TRIES), 1); if (numTries == 0) state.output.fatal( "GPCrossover Pipeline has an invalid number of tries (it must be >= 1).", base.push(P_NUM_TRIES), def.push(P_NUM_TRIES)); maxDepth = state.parameters.getInt(base.push(P_MAXDEPTH), def.push(P_MAXDEPTH), 1); if (maxDepth == 0) state.output.fatal( "GPCrossover Pipeline has an invalid maximum depth (it must be >= 1).", base.push(P_MAXDEPTH), def.push(P_MAXDEPTH)); maxSize = NO_SIZE_LIMIT; if (state.parameters.exists(base.push(P_MAXSIZE), def.push(P_MAXSIZE))) { maxSize = state.parameters.getInt(base.push(P_MAXSIZE), def.push(P_MAXSIZE), 1); if (maxSize < 1) state.output.fatal("Maximum tree size, if defined, must be >= 1"); } tree1 = TREE_UNFIXED; if (state.parameters.exists(base.push(P_TREE).push("" + 0), def.push(P_TREE).push("" + 0))) { tree1 = state.parameters.getInt(base.push(P_TREE).push("" + 0), def.push(P_TREE).push("" + 0), 0); if (tree1 == -1) state.output.fatal("Tree fixed value, if defined, must be >= 0"); } tree2 = TREE_UNFIXED; if (state.parameters.exists(base.push(P_TREE).push("" + 1), def.push(P_TREE).push("" + 1))) { tree2 = state.parameters.getInt(base.push(P_TREE).push("" + 1), def.push(P_TREE).push("" + 1), 0); if (tree2 == -1) state.output.fatal("Tree fixed value, if defined, must be >= 0"); } tossSecondParent = state.parameters.getBoolean(base.push(P_TOSS), def.push(P_TOSS), false); }
private void initializeGenomeSegmentsByEndIndices( final EvolutionState state, final Parameter base, final Parameter def, int numSegments, double minGene, double maxGene) { boolean warnedMin = false; boolean warnedMax = false; double currentSegmentMinGeneValue = Double.MAX_VALUE; double currentSegmentMaxGeneValue = Double.MIN_VALUE; int previousSegmentEnd = -1; int currentSegmentEnd = 0; // iterate over segments and set genes values for each segment for (int i = 0; i < numSegments; i++) { // check if the segment data exist if (state.parameters.exists( base.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END), def.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END))) { // Read the index of the end gene specifying current segment currentSegmentEnd = state.parameters.getInt( base.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END), def.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END)); } else { state.output.fatal( "Genome segment " + i + " has not been defined!" + "\nYou must specify end indices for " + numSegments + " segment(s)", base.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END), base.push(P_SEGMENT).push("" + i).push(P_SEGMENT_END)); } // check if the end index is valid if (currentSegmentEnd <= previousSegmentEnd || currentSegmentEnd >= genomeSize) state.output.fatal( "Invalid end index value for segment " + i + ": " + currentSegmentEnd + "\nThe value must be greater than " + previousSegmentEnd + " and smaller than " + genomeSize); // check if the index of the final segment is equal to the genomeSize if (i == numSegments - 1 && currentSegmentEnd != (genomeSize - 1)) state.output.fatal( "Invalid end index value for the last segment " + i + ": " + currentSegmentEnd + "\nThe value must be equal to the index of the last gene in the genome: " + (genomeSize - 1)); // get min and max values of genes in this segment if (!state.parameters.exists( base.push(P_SEGMENT).push("" + i).push(P_MINGENE), base.push(P_SEGMENT).push("" + i).push(P_MINGENE))) { if (!warnedMin) { state.output.warning( "IntegerVectorSpecies has missing min-gene values for some segments.\n" + "The first segment is #" + i + ".", base.push(P_SEGMENT).push("" + i), base.push(P_SEGMENT).push("" + i)); warnedMin = true; } // the min-gene value has not been defined for this segment so assume the global min value currentSegmentMinGeneValue = minGene; } else // get the min value for this segment { currentSegmentMinGeneValue = state.parameters.getDoubleWithDefault( base.push(P_SEGMENT).push("" + i).push(P_MINGENE), base.push(P_SEGMENT).push("" + i).push(P_MINGENE), minGene); // check if the value is in range if (!inNumericalTypeRange(currentSegmentMinGeneValue)) state.output.error( "This IntegerVectorSpecies has a prototype of the kind: " + i_prototype.getClass().getName() + ", but doesn't have a min-gene " + " value for segment " + i + " within the range of this prototype's genome's data types", base.push(P_SEGMENT).push("" + i).push(P_MINGENE), base.push(P_SEGMENT).push("" + i).push(P_MINGENE)); } if (!state.parameters.exists( base.push(P_SEGMENT).push("" + i).push(P_MAXGENE), base.push(P_SEGMENT).push("" + i).push(P_MAXGENE))) { if (!warnedMax) { state.output.warning( "IntegerVectorSpecies has missing max-gene values for some segments.\n" + "The first segment is #" + i + ".", base.push(P_SEGMENT).push("" + i), base.push(P_SEGMENT).push("" + i)); warnedMax = true; } // the max-gen value has not been defined for this segment so assume the global max value currentSegmentMaxGeneValue = maxGene; } else // get the max value for this segment { currentSegmentMaxGeneValue = state.parameters.getDoubleWithDefault( base.push(P_SEGMENT).push("" + i).push(P_MAXGENE), base.push(P_SEGMENT).push("" + i).push(P_MAXGENE), maxGene); // check if the value is in range if (!inNumericalTypeRange(currentSegmentMaxGeneValue)) state.output.fatal( "This IntegerVectorSpecies has a prototype of the kind: " + i_prototype.getClass().getName() + ", but doesn't have a max-gene " + " value for segment " + i + " within the range of this prototype's genome's data types", base.push(P_SEGMENT).push("" + i).push(P_MAXGENE), base.push(P_SEGMENT).push("" + i).push(P_MAXGENE)); } // check is min is smaller than or equal to max if (currentSegmentMaxGeneValue < currentSegmentMinGeneValue) state.output.fatal( "IntegerVectorSpecies must have a min-gene value for segment " + i + " which is <= the max-gene value", base.push(P_SEGMENT).push("" + i).push(P_MAXGENE), base.push(P_SEGMENT).push("" + i).push(P_MAXGENE)); // and assign min and max values for all genes in this segment for (int j = previousSegmentEnd + 1; j <= currentSegmentEnd; j++) { minGenes[j] = currentSegmentMinGeneValue; maxGenes[j] = currentSegmentMaxGeneValue; } previousSegmentEnd = currentSegmentEnd; } }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); tossSecondParent = state.parameters.getBoolean(base.push(P_TOSS), def.push(P_TOSS), false); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); int numSelects = state.parameters.getInt(base.push(P_NUMSELECTS), def.push(P_NUMSELECTS), 1); if (numSelects == 0) state.output.fatal( "The number of MultiSelection sub-selection methods must be >= 1).", base.push(P_NUMSELECTS), def.push(P_NUMSELECTS)); // make our arrays selects = new SelectionMethod[numSelects]; float total = 0.0f; for (int x = 0; x < numSelects; x++) { Parameter p = base.push(P_SELECT).push("" + x); Parameter d = def.push(P_SELECT).push("" + x); selects[x] = (SelectionMethod) (state.parameters.getInstanceForParameter(p, d, SelectionMethod.class)); selects[x].setup(state, p); // now check probability if (selects[x].probability < 0.0) state.output.error( "MultiSelection select #" + x + " must have a probability >= 0.0", p.push(P_PROB), d.push(P_PROB)); else total += selects[x].probability; } state.output.exitIfErrors(); // Now check for valid probability if (total <= 0.0) state.output.fatal("MultiSelection selects do not sum to a positive probability", base); if (total != 1.0) { state.output.message("Must normalize probabilities for " + base); for (int x = 0; x < numSelects; x++) selects[x].probability /= total; } // totalize float tmp = 0.0f; for (int x = 0; x < numSelects - 1; x++) // yes, it's off by one { tmp += selects[x].probability; selects[x].probability = tmp; } selects[numSelects - 1].probability = 1.0f; }
public void setup(final EvolutionState state, final Parameter base) { Parameter def = defaultBase(); int size; // do we load from a file? loadInds = state.parameters.getFile(base.push(P_FILE), null); // what species do we use? species = (Species) state.parameters.getInstanceForParameter( base.push(P_SPECIES), def.push(P_SPECIES), Species.class); species.setup(state, base.push(P_SPECIES)); // how big should our subpopulation be? size = state.parameters.getInt(base.push(P_SUBPOPSIZE), def.push(P_SUBPOPSIZE), 1); if (size <= 0) state.output.fatal( "Subpopulation size must be an integer >= 1.\n", base.push(P_SUBPOPSIZE), def.push(P_SUBPOPSIZE)); // How often do we retry if we find a duplicate? numDuplicateRetries = state.parameters.getInt(base.push(P_RETRIES), def.push(P_RETRIES), 0); if (numDuplicateRetries < 0) state.output.fatal( "The number of retries for duplicates must be an integer >= 0.\n", base.push(P_RETRIES), def.push(P_RETRIES)); individuals = new Individual[size]; }
/** This must be called <i>after</i> the GPTypes have been set up. */ public final void setup(final EvolutionState state, final Parameter base) { // What's my name? name = state.parameters.getString(base.push(P_NAME), null); if (name == null) state.output.fatal("No name was given for this node constraints.", base.push(P_NAME)); // Register me GPNodeConstraints old_constraints = (GPNodeConstraints) (((GPInitializer) state.initializer).nodeConstraintRepository.put(name, this)); if (old_constraints != null) state.output.fatal( "The GP node constraint \"" + name + "\" has been defined multiple times.", base.push(P_NAME)); // What's my return type? String s = state.parameters.getString(base.push(P_RETURNS), null); if (s == null) state.output.fatal( "No return type given for the GPNodeConstraints " + name, base.push(P_RETURNS)); returntype = GPType.typeFor(s, state); // Load probability of selection if (state.parameters.exists(base.push(P_PROBABILITY), null)) { float f = state.parameters.getFloat(base.push(P_PROBABILITY), null, 0); if (f < 0) state.output.fatal( "The probability of selection is < 0, which is not valid.", base.push(P_PROBABILITY), null); probabilityOfSelection = f; } else probabilityOfSelection = DEFAULT_PROBABILITY; // How many child types do I have? int x = state.parameters.getInt(base.push(P_SIZE), null, 0); if (x < 0) state.output.fatal( "The number of children types for the GPNodeConstraints " + name + " must be >= 0.", base.push(P_SIZE)); childtypes = new GPType[x]; Parameter p = base.push(P_CHILD); // Load my children for (x = 0; x < childtypes.length; x++) { s = state.parameters.getString(p.push("" + x), null); if (s == null) state.output.fatal( "Type #" + x + " is not defined for the GPNodeConstraints " + name + ".", base.push("" + x)); childtypes[x] = GPType.typeFor(s, state); } // ...because I promised when I called typeFor(...) state.output.exitIfErrors(); }
public void setup(final EvolutionState state, final Parameter base) { Parameter def = defaultBase(); terminalProbability = state.parameters.getDoubleWithMax( base.push(P_TERMINAL_PROBABILITY), def.push(P_TERMINAL_PROBABILITY), 0.0, 1.0); if (terminalProbability == -1.0) state.output.fatal( "Invalid terminal probability for KozaNodeSelector ", base.push(P_TERMINAL_PROBABILITY), def.push(P_TERMINAL_PROBABILITY)); nonterminalProbability = state.parameters.getDoubleWithMax( base.push(P_NONTERMINAL_PROBABILITY), def.push(P_NONTERMINAL_PROBABILITY), 0.0, 1.0); if (nonterminalProbability == -1.0) state.output.fatal( "Invalid nonterminal probability for KozaNodeSelector ", base.push(P_NONTERMINAL_PROBABILITY), def.push(P_NONTERMINAL_PROBABILITY)); rootProbability = state.parameters.getDoubleWithMax( base.push(P_ROOT_PROBABILITY), def.push(P_ROOT_PROBABILITY), 0.0, 1.0); if (rootProbability == -1.0) state.output.fatal( "Invalid root probability for KozaNodeSelector ", base.push(P_ROOT_PROBABILITY), def.push(P_ROOT_PROBABILITY)); if (rootProbability + terminalProbability + nonterminalProbability > 1.0f) state.output.fatal( "The terminal, nonterminal, and root for KozaNodeSelector" + base + " may not sum to more than 1.0. (" + terminalProbability + " " + nonterminalProbability + " " + rootProbability + ")", base); reset(); }
public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); Parameter def = defaultBase(); Parameter p = base.push(P_NODESELECTOR).push("0"); Parameter d = def.push(P_NODESELECTOR).push("0"); nodeselect1 = (GPNodeSelector) (state.parameters.getInstanceForParameter(p, d, GPNodeSelector.class)); nodeselect1.setup(state, p); p = base.push(P_NODESELECTOR).push("1"); d = def.push(P_NODESELECTOR).push("1"); if (state.parameters.exists(p, d) && state.parameters.getString(p, d).equals(V_SAME)) // can't just copy it this time; the selectors // use internal caches. So we have to clone it no matter what nodeselect2 = (GPNodeSelector) (nodeselect1.clone()); else { nodeselect2 = (GPNodeSelector) (state.parameters.getInstanceForParameter(p, d, GPNodeSelector.class)); nodeselect2.setup(state, p); } numTries = state.parameters.getInt(base.push(P_NUM_TRIES), def.push(P_NUM_TRIES), 1); if (numTries == 0) state.output.fatal( "GPCrossover Pipeline has an invalid number of tries (it must be >= 1).", base.push(P_NUM_TRIES), def.push(P_NUM_TRIES)); maxDepth = state.parameters.getInt(base.push(P_MAXDEPTH), def.push(P_MAXDEPTH), 1); if (maxDepth == 0) state.output.fatal( "GPCrossover Pipeline has an invalid maximum depth (it must be >= 1).", base.push(P_MAXDEPTH), def.push(P_MAXDEPTH)); maxSize = NO_SIZE_LIMIT; if (state.parameters.exists(base.push(P_MAXSIZE), def.push(P_MAXSIZE))) { maxSize = state.parameters.getInt(base.push(P_MAXSIZE), def.push(P_MAXSIZE), 1); if (maxSize < 1) state.output.fatal("Maximum tree size, if defined, must be >= 1"); } tree1 = TREE_UNFIXED; if (state.parameters.exists(base.push(P_TREE).push("" + 0), def.push(P_TREE).push("" + 0))) { tree1 = state.parameters.getInt(base.push(P_TREE).push("" + 0), def.push(P_TREE).push("" + 0), 0); if (tree1 == -1) state.output.fatal("Tree fixed value, if defined, must be >= 0"); } tree2 = TREE_UNFIXED; if (state.parameters.exists(base.push(P_TREE).push("" + 1), def.push(P_TREE).push("" + 1))) { tree2 = state.parameters.getInt(base.push(P_TREE).push("" + 1), def.push(P_TREE).push("" + 1), 0); if (tree2 == -1) state.output.fatal("Tree fixed value, if defined, must be >= 0"); } tossSecondParent = state.parameters.getBoolean(base.push(P_TOSS), def.push(P_TOSS), false); GPInitializer initializer = ((GPInitializer) state.initializer); fs = initializer.treeConstraints[0].functionset; templateTree = (GPNode) (((GPNode[]) fs.nodesByName.get("+"))[0]).lightClone(); GPNode left = (GPNode) (((GPNode[]) fs.nodesByName.get("*"))[0]).lightClone(); GPNode right = (GPNode) (((GPNode[]) fs.nodesByName.get("*"))[0]).lightClone(); // RegERC ercNode1 = (RegERC)((((GPNode[])fs.nodesByName.get("ERC"))[0]).lightClone()); // // generate TR node that will be replated by random tree // GPNode TRNode = new GPNode(); // ercNode.constraints = 6; // ercNode.children = new GPNode[0]; templateTree.children = new GPNode[2]; templateTree.children[0] = left; templateTree.children[1] = right; left.children = new GPNode[2]; left.children[0] = null; left.children[1] = null; right.children = new GPNode[2]; right.children[0] = null; right.children[1] = null; }
/** Read additional parameters for the spatially-embedded subpopulation. */ public void setup(final EvolutionState state, final Parameter base) { super.setup(state, base); // by default, the space is toroidal toroidal = state.parameters.getBoolean(base.push(P_TOROIDAL), null, true); }