private void writeParameterIdref(XMLWriter writer, Parameter parameter) { if (parameter.isStatistic) { writer.writeIDref("statistic", parameter.getName()); } else { writer.writeIDref(ParameterParser.PARAMETER, parameter.getName()); } }
public void writeAdditionalLogToFile( XMLWriter writer, BranchRatesModelGenerator branchRatesModelGenerator, SubstitutionModelGenerator substitutionModelGenerator) { if (options.hasDiscreteIntegerTraitsExcludeSpecies()) { writer.writeComment("write rate matrix log to file"); String fileName = options.logFileName.substring(0, options.logFileName.indexOf(".log")) + "_rateMatrix.log"; writer.writeOpenTag( LoggerParser.LOG, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, "rateMatrixLog"), new Attribute.Default<String>(LoggerParser.LOG_EVERY, options.logEvery + ""), new Attribute.Default<String>(LoggerParser.FILE_NAME, fileName) }); for (PartitionSubstitutionModel model : options.getPartitionTraitsSubstitutionModels()) { substitutionModelGenerator.writeRateLog(model, writer); } for (PartitionClockModel model : options.getPartitionTraitsClockModels()) { branchRatesModelGenerator.writeLog(model, writer); } writer.writeCloseTag(LoggerParser.LOG); } }
/** * Write the marginalLikelihoodEstimator, pathSamplingAnalysis and steppingStoneSamplingAnalysis * blocks. * * @param writer XMLWriter */ public void writeMLE(XMLWriter writer, MarginalLikelihoodEstimationOptions options) { if (options.performMLE) { writer.writeComment("Define marginal likelihood estimator (PS/SS) settings"); List<Attribute> attributes = new ArrayList<Attribute>(); // attributes.add(new Attribute.Default<String>(XMLParser.ID, "mcmc")); attributes.add( new Attribute.Default<Integer>( MarginalLikelihoodEstimator.CHAIN_LENGTH, options.mleChainLength)); attributes.add( new Attribute.Default<Integer>( MarginalLikelihoodEstimator.PATH_STEPS, options.pathSteps)); attributes.add( new Attribute.Default<String>( MarginalLikelihoodEstimator.PATH_SCHEME, options.pathScheme)); if (!options.pathScheme.equals(MarginalLikelihoodEstimator.LINEAR)) { attributes.add( new Attribute.Default<Double>( MarginalLikelihoodEstimator.ALPHA, options.schemeParameter)); } writer.writeOpenTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR, attributes); writer.writeOpenTag("samplers"); writer.writeIDref("mcmc", "mcmc"); writer.writeCloseTag("samplers"); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>(XMLParser.ID, "pathLikelihood")); writer.writeOpenTag(PathLikelihood.PATH_LIKELIHOOD, attributes); writer.writeOpenTag(PathLikelihood.SOURCE); writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, CompoundLikelihoodParser.POSTERIOR); writer.writeCloseTag(PathLikelihood.SOURCE); writer.writeOpenTag(PathLikelihood.DESTINATION); writer.writeIDref(CompoundLikelihoodParser.PRIOR, CompoundLikelihoodParser.PRIOR); writer.writeCloseTag(PathLikelihood.DESTINATION); writer.writeCloseTag(PathLikelihood.PATH_LIKELIHOOD); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>(XMLParser.ID, "MLELog")); attributes.add(new Attribute.Default<Integer>("logEvery", options.mleLogEvery)); attributes.add(new Attribute.Default<String>("fileName", options.mleFileName)); writer.writeOpenTag("log", attributes); writer.writeIDref("pathLikelihood", "pathLikelihood"); writer.writeCloseTag("log"); writer.writeCloseTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR); writer.writeComment("Path sampling estimator from collected samples"); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>("fileName", options.mleFileName)); writer.writeOpenTag(PathSamplingAnalysis.PATH_SAMPLING_ANALYSIS, attributes); writer.writeTag( "likelihoodColumn", new Attribute.Default<String>("name", "pathLikelihood.delta"), true); writer.writeTag( "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true); writer.writeCloseTag(PathSamplingAnalysis.PATH_SAMPLING_ANALYSIS); writer.writeComment("Stepping-stone sampling estimator from collected samples"); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>("fileName", options.mleFileName)); writer.writeOpenTag( SteppingStoneSamplingAnalysis.STEPPING_STONE_SAMPLING_ANALYSIS, attributes); writer.writeTag( "likelihoodColumn", new Attribute.Default<String>("name", "pathLikelihood.delta"), true); writer.writeTag( "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true); writer.writeCloseTag(SteppingStoneSamplingAnalysis.STEPPING_STONE_SAMPLING_ANALYSIS); } else if (options.performMLEGSS) { // First define necessary components for the tree working prior if (options.choiceTreeWorkingPrior.equals("Product of exponential distributions")) { // more general product of exponentials needs to be constructed if (DEBUG) { System.err.println("productOfExponentials selected: " + options.choiceTreeWorkingPrior); } List<Attribute> attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>(XMLParser.ID, "exponentials")); attributes.add(new Attribute.Default<String>("fileName", beautiOptions.logFileName)); attributes.add( new Attribute.Default<String>("burnin", "" + beautiOptions.chainLength * 0.10)); attributes.add( new Attribute.Default<String>("parameterColumn", "coalescentEventsStatistic")); attributes.add( new Attribute.Default<String>( "dimension", "" + (beautiOptions.taxonList.getTaxonCount() - 1))); writer.writeOpenTag( TreeWorkingPriorParsers.PRODUCT_OF_EXPONENTIALS_POSTERIOR_MEANS_LOESS, attributes); writer.writeTag( TreeModel.TREE_MODEL, new Attribute.Default<String>(XMLParser.ID, TreeModel.TREE_MODEL), true); writer.writeCloseTag(TreeWorkingPriorParsers.PRODUCT_OF_EXPONENTIALS_POSTERIOR_MEANS_LOESS); } else { // matching coalescent model has to be constructed // getting the coalescent model if (DEBUG) { System.err.println( "matching coalescent model selected: " + options.choiceTreeWorkingPrior); System.err.println(beautiOptions.getPartitionTreePriors().get(0).getNodeHeightPrior()); } /*for (PartitionTreePrior prior : options.getPartitionTreePriors()) { treePriorGenerator.writeTreePriorModel(prior, writer); writer.writeText(""); }*/ // TODO: extend for more than 1 coalescent model? TreePriorType nodeHeightPrior = beautiOptions.getPartitionTreePriors().get(0).getNodeHeightPrior(); switch (nodeHeightPrior) { case CONSTANT: writer.writeComment("A working prior for the constant population size model."); writer.writeOpenTag( ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "constantReference"), new Attribute.Default<String>( "units", Units.Utils.getDefaultUnitName(beautiOptions.units)) }); writer.writeOpenTag(ConstantPopulationModelParser.POPULATION_SIZE); writeParameter( "constantReference.popSize", "constant.popSize", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ConstantPopulationModelParser.POPULATION_SIZE); writer.writeCloseTag(ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL); writer.writeComment("A working prior for the coalescent."); writer.writeOpenTag( CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference") }); writer.writeOpenTag(CoalescentLikelihoodParser.MODEL); writer.writeIDref( ConstantPopulationModelParser.CONSTANT_POPULATION_MODEL, beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference"); writer.writeCloseTag(CoalescentLikelihoodParser.MODEL); writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL); writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD); break; case EXPONENTIAL: writer.writeComment("A working prior for the exponential growth model."); writer.writeOpenTag( ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "exponentialReference"), new Attribute.Default<String>( "units", Units.Utils.getDefaultUnitName(beautiOptions.units)) }); writer.writeOpenTag(ExponentialGrowthModelParser.POPULATION_SIZE); writeParameter( "exponentialReference.popSize", "exponential.popSize", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ExponentialGrowthModelParser.POPULATION_SIZE); writer.writeOpenTag(ExponentialGrowthModelParser.GROWTH_RATE); writeParameter( "exponentialReference.growthRate", "exponential.growthRate", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ExponentialGrowthModelParser.GROWTH_RATE); writer.writeCloseTag(ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL); writer.writeComment("A working prior for the coalescent."); writer.writeOpenTag( CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference") }); writer.writeOpenTag(CoalescentLikelihoodParser.MODEL); writer.writeIDref( ExponentialGrowthModelParser.EXPONENTIAL_GROWTH_MODEL, beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference"); writer.writeCloseTag(CoalescentLikelihoodParser.MODEL); writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL); writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD); break; case LOGISTIC: writer.writeComment("A working prior for the logistic growth model."); writer.writeOpenTag( LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "logisticReference"), new Attribute.Default<String>( "units", Units.Utils.getDefaultUnitName(beautiOptions.units)) }); writer.writeOpenTag(LogisticGrowthModelParser.POPULATION_SIZE); writeParameter( "logisticReference.popSize", "logistic.popSize", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(LogisticGrowthModelParser.POPULATION_SIZE); writer.writeOpenTag(LogisticGrowthModelParser.GROWTH_RATE); writeParameter( "logisticReference.growthRate", "logistic.growthRate", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(LogisticGrowthModelParser.GROWTH_RATE); writer.writeOpenTag(LogisticGrowthModelParser.TIME_50); writeParameter( "logisticReference.t50", "logistic.t50", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(LogisticGrowthModelParser.TIME_50); writer.writeCloseTag(LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL); writer.writeComment("A working prior for the coalescent."); writer.writeOpenTag( CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference") }); writer.writeOpenTag(CoalescentLikelihoodParser.MODEL); writer.writeIDref( LogisticGrowthModelParser.LOGISTIC_GROWTH_MODEL, beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference"); writer.writeCloseTag(CoalescentLikelihoodParser.MODEL); writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL); writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD); break; case EXPANSION: writer.writeComment("A working prior for the expansion growth model."); writer.writeOpenTag( ExpansionModelParser.EXPANSION_MODEL, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "expansionReference"), new Attribute.Default<String>( "units", Units.Utils.getDefaultUnitName(beautiOptions.units)) }); writer.writeOpenTag(ExpansionModelParser.POPULATION_SIZE); writeParameter( "expansionReference.popSize", "expansion.popSize", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ExpansionModelParser.POPULATION_SIZE); writer.writeOpenTag(ExpansionModelParser.GROWTH_RATE); writeParameter( "expansionReference.growthRate", "expansion.growthRate", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ExpansionModelParser.GROWTH_RATE); writer.writeOpenTag(ExpansionModelParser.ANCESTRAL_POPULATION_PROPORTION); writeParameter( "expansionReference.ancestralProportion", "expansion.ancestralProportion", beautiOptions.logFileName, (int) (options.mleChainLength * 0.10), writer); writer.writeCloseTag(ExpansionModelParser.ANCESTRAL_POPULATION_PROPORTION); writer.writeCloseTag(ExpansionModelParser.EXPANSION_MODEL); writer.writeComment("A working prior for the coalescent."); writer.writeOpenTag( CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, modelPrefix + "coalescentReference") }); writer.writeOpenTag(CoalescentLikelihoodParser.MODEL); writer.writeIDref( ExpansionModelParser.EXPANSION_MODEL, beautiOptions.getPartitionTreePriors().get(0).getPrefix() + "constantReference"); writer.writeCloseTag(CoalescentLikelihoodParser.MODEL); writer.writeOpenTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeIDref(TreeModel.TREE_MODEL, modelPrefix + TreeModel.TREE_MODEL); writer.writeCloseTag(CoalescentLikelihoodParser.POPULATION_TREE); writer.writeCloseTag(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD); break; default: // Do not switch to product of exponentials as the coalescentEventsStatistic has not // been logged // TODO: show menu that explains mismatch between prior and working prior? // TODO: but show it when the MCM option is wrongfully being selected, don't do anything // here } } writer.writeComment("Define marginal likelihood estimator (GSS) settings"); List<Attribute> attributes = new ArrayList<Attribute>(); attributes.add( new Attribute.Default<Integer>( MarginalLikelihoodEstimator.CHAIN_LENGTH, options.mleChainLength)); attributes.add( new Attribute.Default<Integer>( MarginalLikelihoodEstimator.PATH_STEPS, options.pathSteps)); attributes.add( new Attribute.Default<String>( MarginalLikelihoodEstimator.PATH_SCHEME, options.pathScheme)); if (!options.pathScheme.equals(MarginalLikelihoodEstimator.LINEAR)) { attributes.add( new Attribute.Default<Double>( MarginalLikelihoodEstimator.ALPHA, options.schemeParameter)); } writer.writeOpenTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR, attributes); writer.writeOpenTag("samplers"); writer.writeIDref("mcmc", "mcmc"); writer.writeCloseTag("samplers"); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>(XMLParser.ID, "pathLikelihood")); writer.writeOpenTag(PathLikelihood.PATH_LIKELIHOOD, attributes); writer.writeOpenTag(PathLikelihood.SOURCE); writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, CompoundLikelihoodParser.POSTERIOR); writer.writeCloseTag(PathLikelihood.SOURCE); writer.writeOpenTag(PathLikelihood.DESTINATION); writer.writeOpenTag(CompoundLikelihoodParser.WORKING_PRIOR); ArrayList<Parameter> parameters = beautiOptions.selectParameters(); for (Parameter param : parameters) { if (DEBUG) { System.err.println(param.toString() + " " + param.priorType.toString()); } // should leave out those parameters set by the coalescent if (param.priorType != PriorType.NONE_TREE_PRIOR) { // TODO: frequencies is multidimensional, is that automatically dealt with? writer.writeOpenTag( WorkingPriorParsers.NORMAL_REFERENCE_PRIOR, new Attribute[] { new Attribute.Default<String>("fileName", beautiOptions.logFileName), new Attribute.Default<String>("parameterColumn", param.getName()), new Attribute.Default<String>("burnin", "" + beautiOptions.chainLength * 0.10) }); writeParameterIdref(writer, param); writer.writeCloseTag(WorkingPriorParsers.NORMAL_REFERENCE_PRIOR); } } if (options.choiceTreeWorkingPrior.equals("Product of exponential distributions")) { writer.writeIDref("productOfExponentialsPosteriorMeansLoess", "exponentials"); } else { writer.writeIDref(CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, "coalescentReference"); } writer.writeCloseTag(CompoundLikelihoodParser.WORKING_PRIOR); writer.writeCloseTag(PathLikelihood.DESTINATION); writer.writeCloseTag(PathLikelihood.PATH_LIKELIHOOD); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>(XMLParser.ID, "MLELog")); attributes.add(new Attribute.Default<Integer>("logEvery", options.mleLogEvery)); attributes.add(new Attribute.Default<String>("fileName", options.mleFileName)); writer.writeOpenTag("log", attributes); writer.writeIDref("pathLikelihood", "pathLikelihood"); writer.writeCloseTag("log"); writer.writeCloseTag(MarginalLikelihoodEstimator.MARGINAL_LIKELIHOOD_ESTIMATOR); writer.writeComment("Generalized stepping-stone sampling estimator from collected samples"); attributes = new ArrayList<Attribute>(); attributes.add(new Attribute.Default<String>("fileName", options.mleFileName)); writer.writeOpenTag( GeneralizedSteppingStoneSamplingAnalysis.GENERALIZED_STEPPING_STONE_SAMPLING_ANALYSIS, attributes); writer.writeTag( "sourceColumn", new Attribute.Default<String>("name", "pathLikelihood.source"), true); writer.writeTag( "destinationColumn", new Attribute.Default<String>("name", "pathLikelihood.destination"), true); writer.writeTag( "thetaColumn", new Attribute.Default<String>("name", "pathLikelihood.theta"), true); writer.writeCloseTag( GeneralizedSteppingStoneSamplingAnalysis.GENERALIZED_STEPPING_STONE_SAMPLING_ANALYSIS); } }
/** * write log to screen * * @param writer XMLWriter * @param branchRatesModelGenerator BranchRatesModelGenerator */ public void writeLogToScreen( XMLWriter writer, BranchRatesModelGenerator branchRatesModelGenerator, SubstitutionModelGenerator substitutionModelGenerator) { writer.writeComment("write log to screen"); writer.writeOpenTag( LoggerParser.LOG, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, "screenLog"), new Attribute.Default<String>(LoggerParser.LOG_EVERY, options.echoEvery + "") }); if (options.hasData()) { writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>(ColumnsParser.LABEL, "Posterior"), new Attribute.Default<String>(ColumnsParser.DECIMAL_PLACES, "4"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, "posterior"); writer.writeCloseTag(ColumnsParser.COLUMN); } writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>(ColumnsParser.LABEL, "Prior"), new Attribute.Default<String>(ColumnsParser.DECIMAL_PLACES, "4"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); writer.writeIDref(CompoundLikelihoodParser.PRIOR, "prior"); writer.writeCloseTag(ColumnsParser.COLUMN); if (options.hasData()) { writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>(ColumnsParser.LABEL, "Likelihood"), new Attribute.Default<String>(ColumnsParser.DECIMAL_PLACES, "4"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); writer.writeIDref(CompoundLikelihoodParser.LIKELIHOOD, "likelihood"); writer.writeCloseTag(ColumnsParser.COLUMN); } if (options.useStarBEAST) { // species writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>(ColumnsParser.LABEL, "PopMean"), new Attribute.Default<String>(ColumnsParser.DECIMAL_PLACES, "4"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); writer.writeIDref( ParameterParser.PARAMETER, TraitData.TRAIT_SPECIES + "." + options.starBEASTOptions.POP_MEAN); writer.writeCloseTag(ColumnsParser.COLUMN); } for (PartitionTreeModel model : options.getPartitionTreeModels()) { writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>( ColumnsParser.LABEL, model.getPrefix() + TreeModelParser.ROOT_HEIGHT), new Attribute.Default<String>(ColumnsParser.SIGNIFICANT_FIGURES, "6"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); writer.writeIDref( ParameterParser.PARAMETER, model.getPrefix() + TreeModel.TREE_MODEL + "." + TreeModelParser.ROOT_HEIGHT); writer.writeCloseTag(ColumnsParser.COLUMN); } for (PartitionClockModel model : options.getPartitionClockModels()) { writer.writeOpenTag( ColumnsParser.COLUMN, new Attribute[] { new Attribute.Default<String>( ColumnsParser.LABEL, branchRatesModelGenerator.getClockRateString(model)), new Attribute.Default<String>(ColumnsParser.SIGNIFICANT_FIGURES, "6"), new Attribute.Default<String>(ColumnsParser.WIDTH, "12") }); branchRatesModelGenerator.writeAllClockRateRefs(model, writer); // if (options.clockModelOptions.getRateOptionClockModel() == FixRateType.FIX_MEAN) { // writer.writeIDref(ParameterParser.PARAMETER, "allClockRates"); // for (PartitionClockModel model : options.getPartitionClockModels()) { // if (model.getClockType() == ClockType.UNCORRELATED_LOGNORMAL) // writer.writeIDref(ParameterParser.PARAMETER, model.getPrefix() + // ClockType.UCLD_STDEV); // } // } else { // for (PartitionClockModel model : options.getPartitionClockModels()) { // branchRatesModelGenerator.writeAllClockRateRefs(model, writer); // } // } writer.writeCloseTag(ColumnsParser.COLUMN); } if (options.hasDiscreteIntegerTraitsExcludeSpecies()) { for (PartitionSubstitutionModel model : options.getPartitionTraitsSubstitutionModels()) { substitutionModelGenerator.writeStatisticLog(model, writer); } } generateInsertionPoint(ComponentGenerator.InsertionPoint.IN_SCREEN_LOG, writer); writer.writeCloseTag(LoggerParser.LOG); generateInsertionPoint(ComponentGenerator.InsertionPoint.AFTER_SCREEN_LOG, writer); }
/** * write tree log to file * * @param writer XMLWriter */ public void writeTreeLogToFile(XMLWriter writer) { writer.writeComment("write tree log to file"); if (options.useStarBEAST) { // species // species tree log writer.writeOpenTag( TreeLoggerParser.LOG_TREE, new Attribute[] { new Attribute.Default<String>( XMLParser.ID, TraitData.TRAIT_SPECIES + "." + TREE_FILE_LOG), // speciesTreeFileLog new Attribute.Default<String>(TreeLoggerParser.LOG_EVERY, options.logEvery + ""), new Attribute.Default<String>(TreeLoggerParser.NEXUS_FORMAT, "true"), new Attribute.Default<String>( TreeLoggerParser.FILE_NAME, options.fileNameStem + "." + options.starBEASTOptions.SPECIES_TREE_FILE_NAME), new Attribute.Default<String>(TreeLoggerParser.SORT_TRANSLATION_TABLE, "true") }); writer.writeIDref(SpeciesTreeModelParser.SPECIES_TREE, SP_TREE); if (options.hasData()) { // we have data... writer.writeIDref("posterior", "posterior"); } writer.writeCloseTag(TreeLoggerParser.LOG_TREE); } // gene tree log // TODO make code consistent to MCMCPanel for (PartitionTreeModel tree : options.getPartitionTreeModels()) { String treeFileName; if (options.substTreeLog) { treeFileName = options.fileNameStem + "." + tree.getPrefix() + "(time)." + STARBEASTOptions.TREE_FILE_NAME; } else { treeFileName = options.fileNameStem + "." + tree.getPrefix() + STARBEASTOptions.TREE_FILE_NAME; // stem.partitionName.tree } if (options.treeFileName.get(0).endsWith(".txt")) { treeFileName += ".txt"; } List<Attribute> attributes = new ArrayList<Attribute>(); attributes.add( new Attribute.Default<String>( XMLParser.ID, tree.getPrefix() + TREE_FILE_LOG)); // partionName.treeFileLog attributes.add( new Attribute.Default<String>(TreeLoggerParser.LOG_EVERY, options.logEvery + "")); attributes.add(new Attribute.Default<String>(TreeLoggerParser.NEXUS_FORMAT, "true")); attributes.add(new Attribute.Default<String>(TreeLoggerParser.FILE_NAME, treeFileName)); attributes.add( new Attribute.Default<String>(TreeLoggerParser.SORT_TRANSLATION_TABLE, "true")); // if (options.clockModelOptions.getRateOptionClockModel() == FixRateType.RElATIVE_TO && // tree.containsUncorrelatedRelaxClock()) { //TODO: Sibon's discretized branch length stuff // double aveFixedRate = // options.clockModelOptions.getSelectedRate(options.getPartitionClockModels()); // attributes.add(new Attribute.Default<String>(TreeLoggerParser.NORMALISE_MEAN_RATE_TO, // Double.toString(aveFixedRate))); // } // generate <logTree> writer.writeOpenTag(TreeLoggerParser.LOG_TREE, attributes); // writer.writeOpenTag(TreeLoggerParser.LOG_TREE, // new Attribute[]{ // new Attribute.Default<String>(XMLParser.ID, tree.getPrefix() + // TREE_FILE_LOG), // partionName.treeFileLog // new Attribute.Default<String>(TreeLoggerParser.LOG_EVERY, // options.logEvery + ""), // new Attribute.Default<String>(TreeLoggerParser.NEXUS_FORMAT, // "true"), // new Attribute.Default<String>(TreeLoggerParser.FILE_NAME, // treeFileName), // new // Attribute.Default<String>(TreeLoggerParser.SORT_TRANSLATION_TABLE, "true") // }); writer.writeIDref(TreeModel.TREE_MODEL, tree.getPrefix() + TreeModel.TREE_MODEL); for (PartitionClockModel model : options.getPartitionClockModels(options.getAllPartitionData(tree))) { if (options.getAllPartitionData(model).get(0).getTraitType() == null) { switch (model.getClockType()) { case STRICT_CLOCK: writer.writeIDref( StrictClockBranchRatesParser.STRICT_CLOCK_BRANCH_RATES, model.getPrefix() + BranchRateModel.BRANCH_RATES); break; case UNCORRELATED_EXPONENTIAL: case UNCORRELATED_LOGNORMAL: writer.writeIDref( DiscretizedBranchRatesParser.DISCRETIZED_BRANCH_RATES, options.noDuplicatedPrefix(model.getPrefix(), tree.getPrefix()) + BranchRateModel.BRANCH_RATES); break; case RANDOM_LOCAL_CLOCK: writer.writeIDref( RandomLocalClockModelParser.LOCAL_BRANCH_RATES, model.getPrefix() + BranchRateModel.BRANCH_RATES); break; case AUTOCORRELATED_LOGNORMAL: writer.writeIDref( ACLikelihoodParser.AC_LIKELIHOOD, options.noDuplicatedPrefix(model.getPrefix(), tree.getPrefix()) + BranchRateModel.BRANCH_RATES); break; default: throw new IllegalArgumentException("Unknown clock model"); } } } if (options.hasData()) { // we have data... writer.writeIDref("posterior", "posterior"); } if (options.hasDiscreteIntegerTraitsExcludeSpecies()) { for (PartitionData partitionData : options.getAllPartitionData( tree)) { // Each TD except Species has one AncestralTreeLikelihood if (partitionData.getTraitType() != null && (!partitionData.getName().equalsIgnoreCase(TraitData.TRAIT_SPECIES.toString()))) writer.writeIDref( AncestralStateTreeLikelihoodParser.RECONSTRUCTING_TREE_LIKELIHOOD, partitionData.getPrefix() + TreeLikelihoodParser.TREE_LIKELIHOOD); } } writer.writeCloseTag(TreeLoggerParser.LOG_TREE); } // end For loop generateInsertionPoint(ComponentGenerator.InsertionPoint.IN_TREES_LOG, writer); if (options.substTreeLog) { if (options.useStarBEAST) { // species // TODO: species sub tree } // gene tree for (PartitionTreeModel tree : options.getPartitionTreeModels()) { // write tree log to file writer.writeOpenTag( TreeLoggerParser.LOG_TREE, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, tree.getPrefix() + SUB_TREE_FILE_LOG), new Attribute.Default<String>(TreeLoggerParser.LOG_EVERY, options.logEvery + ""), new Attribute.Default<String>(TreeLoggerParser.NEXUS_FORMAT, "true"), new Attribute.Default<String>( TreeLoggerParser.FILE_NAME, options.fileNameStem + "." + tree.getPrefix() + "(subst)." + STARBEASTOptions.TREE_FILE_NAME), new Attribute.Default<String>( TreeLoggerParser.BRANCH_LENGTHS, TreeLoggerParser.SUBSTITUTIONS) }); writer.writeIDref(TreeModel.TREE_MODEL, tree.getPrefix() + TreeModel.TREE_MODEL); for (PartitionClockModel model : options.getPartitionClockModels(options.getAllPartitionData(tree))) { if (options.getAllPartitionData(model).get(0).getTraitType() == null) { switch (model.getClockType()) { case STRICT_CLOCK: writer.writeIDref( StrictClockBranchRatesParser.STRICT_CLOCK_BRANCH_RATES, model.getPrefix() + BranchRateModel.BRANCH_RATES); break; case UNCORRELATED_EXPONENTIAL: case UNCORRELATED_LOGNORMAL: writer.writeIDref( DiscretizedBranchRatesParser.DISCRETIZED_BRANCH_RATES, options.noDuplicatedPrefix(model.getPrefix(), tree.getPrefix()) + BranchRateModel.BRANCH_RATES); break; case RANDOM_LOCAL_CLOCK: writer.writeIDref( RandomLocalClockModelParser.LOCAL_BRANCH_RATES, model.getPrefix() + BranchRateModel.BRANCH_RATES); break; case AUTOCORRELATED_LOGNORMAL: writer.writeIDref( ACLikelihoodParser.AC_LIKELIHOOD, options.noDuplicatedPrefix(model.getPrefix(), tree.getPrefix()) + BranchRateModel.BRANCH_RATES); break; default: throw new IllegalArgumentException("Unknown clock model"); } } } writer.writeCloseTag(TreeLoggerParser.LOG_TREE); } } generateInsertionPoint(ComponentGenerator.InsertionPoint.AFTER_TREES_LOG, writer); }
/** * write log to file * * @param writer XMLWriter * @param treePriorGenerator TreePriorGenerator * @param branchRatesModelGenerator BranchRatesModelGenerator * @param substitutionModelGenerator SubstitutionModelGenerator * @param treeLikelihoodGenerator TreeLikelihoodGenerator * @param generalTraitGenerator */ public void writeLogToFile( XMLWriter writer, TreePriorGenerator treePriorGenerator, BranchRatesModelGenerator branchRatesModelGenerator, SubstitutionModelGenerator substitutionModelGenerator, TreeLikelihoodGenerator treeLikelihoodGenerator, GeneralTraitGenerator generalTraitGenerator) { writer.writeComment("write log to file"); if (options.logFileName == null) { options.logFileName = options.fileNameStem + ".log"; } writer.writeOpenTag( LoggerParser.LOG, new Attribute[] { new Attribute.Default<String>(XMLParser.ID, "fileLog"), new Attribute.Default<String>(LoggerParser.LOG_EVERY, options.logEvery + ""), new Attribute.Default<String>(LoggerParser.FILE_NAME, options.logFileName), new Attribute.Default<Boolean>( LoggerParser.ALLOW_OVERWRITE_LOG, options.allowOverwriteLog) }); if (options.hasData()) { writer.writeIDref(CompoundLikelihoodParser.POSTERIOR, "posterior"); } writer.writeIDref(CompoundLikelihoodParser.PRIOR, "prior"); if (options.hasData()) { writer.writeIDref(CompoundLikelihoodParser.LIKELIHOOD, "likelihood"); } if (options.useStarBEAST) { // species // coalescent prior writer.writeIDref( MultiSpeciesCoalescentParser.SPECIES_COALESCENT, TraitData.TRAIT_SPECIES + "." + COALESCENT); // prior on population sizes // if (options.speciesTreePrior == TreePriorType.SPECIES_YULE) { writer.writeIDref(MixedDistributionLikelihoodParser.DISTRIBUTION_LIKELIHOOD, SPOPS); // } else { // writer.writeIDref(SpeciesTreeBMPrior.STPRIOR, STP); // } // prior on species tree writer.writeIDref(SpeciationLikelihoodParser.SPECIATION_LIKELIHOOD, SPECIATION_LIKE); writer.writeIDref( ParameterParser.PARAMETER, TraitData.TRAIT_SPECIES + "." + options.starBEASTOptions.POP_MEAN); writer.writeIDref( ParameterParser.PARAMETER, SpeciesTreeModelParser.SPECIES_TREE + "." + SPLIT_POPS); if (options.getPartitionTreePriors().get(0).getNodeHeightPrior() == TreePriorType.SPECIES_BIRTH_DEATH) { writer.writeIDref( ParameterParser.PARAMETER, TraitData.TRAIT_SPECIES + "." + BirthDeathModelParser.MEAN_GROWTH_RATE_PARAM_NAME); writer.writeIDref( ParameterParser.PARAMETER, TraitData.TRAIT_SPECIES + "." + BirthDeathModelParser.RELATIVE_DEATH_RATE_PARAM_NAME); } else if (options.getPartitionTreePriors().get(0).getNodeHeightPrior() == TreePriorType.SPECIES_YULE) { writer.writeIDref( ParameterParser.PARAMETER, TraitData.TRAIT_SPECIES + "." + YuleModelParser.YULE + "." + YuleModelParser.BIRTH_RATE); } else { throw new IllegalArgumentException( "Get wrong species tree prior using *BEAST : " + options.getPartitionTreePriors().get(0).getNodeHeightPrior().toString()); } // Species Tree: tmrcaStatistic writer.writeIDref( TMRCAStatisticParser.TMRCA_STATISTIC, SpeciesTreeModelParser.SPECIES_TREE + "." + TreeModelParser.ROOT_HEIGHT); } for (PartitionTreeModel model : options.getPartitionTreeModels()) { writer.writeIDref( ParameterParser.PARAMETER, model.getPrefix() + TreeModel.TREE_MODEL + "." + TreeModelParser.ROOT_HEIGHT); } for (Taxa taxa : options.taxonSets) { // make tmrca(tree.name) eay to read in log for Tracer writer.writeIDref( TMRCAStatisticParser.TMRCA_STATISTIC, "tmrca(" + taxa.getTreeModel().getPrefix() + taxa.getId() + ")"); } // if ( options.shareSameTreePrior ) { // Share Same Tree Prior // treePriorGenerator.setModelPrefix(""); // treePriorGenerator.writeParameterLog(options.activedSameTreePrior, writer); // } else { // no species for (PartitionTreePrior prior : options.getPartitionTreePriors()) { // treePriorGenerator.setModelPrefix(prior.getPrefix()); // priorName.treeModel treePriorGenerator.writeParameterLog(prior, writer); } // } for (PartitionSubstitutionModel model : options.getPartitionSubstitutionModels()) { substitutionModelGenerator.writeLog(writer, model); if (model.hasCodon()) { writer.writeIDref(CompoundParameterParser.COMPOUND_PARAMETER, model.getPrefix() + "allMus"); } } if (options.clockModelOptions.getRateOptionClockModel() == FixRateType.FIX_MEAN) { writer.writeIDref(ParameterParser.PARAMETER, "allClockRates"); for (PartitionClockModel model : options.getPartitionClockModels()) { if (model.getClockType() == ClockType.UNCORRELATED_LOGNORMAL) writer.writeIDref(ParameterParser.PARAMETER, model.getPrefix() + ClockType.UCLD_STDEV); } } else { for (PartitionClockModel model : options.getPartitionClockModels()) { branchRatesModelGenerator.writeLog(model, writer); } } for (PartitionClockModel model : options.getPartitionClockModels()) { branchRatesModelGenerator.writeLogStatistic(model, writer); } generateInsertionPoint(ComponentGenerator.InsertionPoint.IN_FILE_LOG_PARAMETERS, writer); if (options.hasData()) { treeLikelihoodGenerator.writeTreeLikelihoodReferences(writer); } generateInsertionPoint(ComponentGenerator.InsertionPoint.IN_FILE_LOG_LIKELIHOODS, writer); // coalescentLikelihood for (PartitionTreeModel model : options.getPartitionTreeModels()) { PartitionTreePrior prior = model.getPartitionTreePrior(); treePriorGenerator.writePriorLikelihoodReferenceLog(prior, model, writer); writer.writeText(""); } for (PartitionTreePrior prior : options.getPartitionTreePriors()) { if (prior.getNodeHeightPrior() == TreePriorType.EXTENDED_SKYLINE) writer.writeIDref( CoalescentLikelihoodParser.COALESCENT_LIKELIHOOD, prior.getPrefix() + COALESCENT); // only 1 coalescent } if (options.hasDiscreteIntegerTraitsExcludeSpecies()) { generalTraitGenerator.writeAncestralTreeLikelihoodReferences(writer); } writer.writeCloseTag(LoggerParser.LOG); generateInsertionPoint(ComponentGenerator.InsertionPoint.AFTER_FILE_LOG, writer); }