@Override public void processNewResult(ResultHierarchy hier, Result newResult) { // We may just have added this result. if (newResult instanceof Clustering && isReferenceResult((Clustering<?>) newResult)) { return; } Database db = ResultUtil.findDatabase(hier); List<Clustering<?>> crs = ResultUtil.getClusteringResults(newResult); if (crs == null || crs.size() < 1) { return; } // Compute the reference clustering Clustering<?> refc = null; // Try to find an existing reference clustering (globally) { Collection<Clustering<?>> cs = ResultUtil.filterResults(hier, db, Clustering.class); for (Clustering<?> test : cs) { if (isReferenceResult(test)) { refc = test; break; } } } // Try to find an existing reference clustering (locally) if (refc == null) { Collection<Clustering<?>> cs = ResultUtil.filterResults(hier, newResult, Clustering.class); for (Clustering<?> test : cs) { if (isReferenceResult(test)) { refc = test; break; } } } if (refc == null) { LOG.debug("Generating a new reference clustering."); Result refres = referencealg.run(db); List<Clustering<?>> refcrs = ResultUtil.getClusteringResults(refres); if (refcrs.size() == 0) { LOG.warning("Reference algorithm did not return a clustering result!"); return; } if (refcrs.size() > 1) { LOG.warning("Reference algorithm returned more than one result!"); } refc = refcrs.get(0); } else { LOG.debug("Using existing clustering: " + refc.getLongName() + " " + refc.getShortName()); } for (Clustering<?> c : crs) { if (c == refc) { continue; } evaluteResult(db, c, refc); } }
@Override public void processNewResult(ResultHierarchy hier, Result result) { List<Clustering<?>> crs = ResultUtil.getClusteringResults(result); if (crs.size() < 1) { return; } Database db = ResultUtil.findDatabase(hier); Relation<? extends NumberVector> rel = db.getRelation(this.distance.getInputTypeRestriction()); for (Clustering<?> c : crs) { evaluateClustering(db, rel, c); } }
@Override public void processNewResult(ResultHierarchy hier, Result result) { List<Clustering<?>> crs = ResultUtil.getClusteringResults(result); if (crs.size() < 1) { return; } Database db = ResultUtil.findDatabase(hier); Relation<O> rel = db.getRelation(distance.getInputTypeRestriction()); DistanceQuery<O> dq = db.getDistanceQuery(rel, distance); for (Clustering<?> c : crs) { evaluateClustering(db, rel, dq, c); } }
@Override public void processNewResult(HierarchicalResult baseResult, Result result) { final Database db = ResultUtil.findDatabase(baseResult); List<OutlierResult> ors = ResultUtil.filterResults(result, OutlierResult.class); if (ors == null || ors.size() <= 0) { // logger.warning("No outlier results found for // "+ComputeOutlierHistogram.class.getSimpleName()); return; } for (OutlierResult or : ors) { db.getHierarchy().add(or, evaluateOutlierResult(db, or)); } }
protected void autoEvaluateClusterings(ResultHierarchy hier, Result newResult) { Collection<Clustering<?>> clusterings = ResultUtil.filterResults(hier, newResult, Clustering.class); if (LOG.isDebugging()) { LOG.warning("Number of new clustering results: " + clusterings.size()); } for (Iterator<Clustering<?>> c = clusterings.iterator(); c.hasNext(); ) { Clustering<?> test = c.next(); if ("allinone-clustering".equals(test.getShortName())) { c.remove(); } else if ("allinnoise-clustering".equals(test.getShortName())) { c.remove(); } else if ("bylabel-clustering".equals(test.getShortName())) { c.remove(); } else if ("bymodel-clustering".equals(test.getShortName())) { c.remove(); } } if (clusterings.size() > 0) { try { new EvaluateClustering(new ByLabelClustering(), false, true) .processNewResult(hier, newResult); } catch (NoSupportedDataTypeException e) { // Pass - the data probably did not have labels. } } }
protected void autoEvaluateOutliers(ResultHierarchy hier, Result newResult) { Collection<OutlierResult> outliers = ResultUtil.filterResults(hier, newResult, OutlierResult.class); if (LOG.isDebugging()) { LOG.debug("Number of new outlier results: " + outliers.size()); } if (outliers.size() > 0) { Database db = ResultUtil.findDatabase(hier); ResultUtil.ensureClusteringResult(db, db); Collection<Clustering<?>> clusterings = ResultUtil.filterResults(hier, db, Clustering.class); if (clusterings.size() == 0) { LOG.warning( "Could not find a clustering result, even after running 'ensureClusteringResult'?!?"); return; } Clustering<?> basec = clusterings.iterator().next(); // Find minority class label int min = Integer.MAX_VALUE; int total = 0; String label = null; if (basec.getAllClusters().size() > 1) { for (Cluster<?> c : basec.getAllClusters()) { final int csize = c.getIDs().size(); total += csize; if (csize < min) { min = csize; label = c.getName(); } } } if (label == null) { LOG.warning("Could not evaluate outlier results, as I could not find a minority label."); return; } if (min == 1) { LOG.warning( "The minority class label had a single object. Try using 'ClassLabelFilter' to identify the class label column."); } if (min > 0.05 * total) { LOG.warning( "The minority class I discovered (labeled '" + label + "') has " + (min * 100. / total) + "% of objects. Outlier classes should be more rare!"); } LOG.verbose("Evaluating using minority class: " + label); Pattern pat = Pattern.compile("^" + Pattern.quote(label) + "$"); // Evaluate rankings. new OutlierRankingEvaluation(pat).processNewResult(hier, newResult); // Compute ROC curve new OutlierROCCurve(pat).processNewResult(hier, newResult); // Compute Precision at k new OutlierPrecisionAtKCurve(pat, min << 1).processNewResult(hier, newResult); // Compute ROC curve new OutlierPrecisionRecallCurve(pat).processNewResult(hier, newResult); // Compute outlier histogram new ComputeOutlierHistogram(pat, 50, new LinearScaling(), false) .processNewResult(hier, newResult); } }