@Override
 public void processNewResult(ResultHierarchy hier, Result newResult) {
   // We may just have added this result.
   if (newResult instanceof Clustering && isReferenceResult((Clustering<?>) newResult)) {
     return;
   }
   Database db = ResultUtil.findDatabase(hier);
   List<Clustering<?>> crs = ResultUtil.getClusteringResults(newResult);
   if (crs == null || crs.size() < 1) {
     return;
   }
   // Compute the reference clustering
   Clustering<?> refc = null;
   // Try to find an existing reference clustering (globally)
   {
     Collection<Clustering<?>> cs = ResultUtil.filterResults(hier, db, Clustering.class);
     for (Clustering<?> test : cs) {
       if (isReferenceResult(test)) {
         refc = test;
         break;
       }
     }
   }
   // Try to find an existing reference clustering (locally)
   if (refc == null) {
     Collection<Clustering<?>> cs = ResultUtil.filterResults(hier, newResult, Clustering.class);
     for (Clustering<?> test : cs) {
       if (isReferenceResult(test)) {
         refc = test;
         break;
       }
     }
   }
   if (refc == null) {
     LOG.debug("Generating a new reference clustering.");
     Result refres = referencealg.run(db);
     List<Clustering<?>> refcrs = ResultUtil.getClusteringResults(refres);
     if (refcrs.size() == 0) {
       LOG.warning("Reference algorithm did not return a clustering result!");
       return;
     }
     if (refcrs.size() > 1) {
       LOG.warning("Reference algorithm returned more than one result!");
     }
     refc = refcrs.get(0);
   } else {
     LOG.debug("Using existing clustering: " + refc.getLongName() + " " + refc.getShortName());
   }
   for (Clustering<?> c : crs) {
     if (c == refc) {
       continue;
     }
     evaluteResult(db, c, refc);
   }
 }
  @Override
  public void processNewResult(ResultHierarchy hier, Result result) {
    List<Clustering<?>> crs = ResultUtil.getClusteringResults(result);
    if (crs.size() < 1) {
      return;
    }
    Database db = ResultUtil.findDatabase(hier);
    Relation<? extends NumberVector> rel = db.getRelation(this.distance.getInputTypeRestriction());

    for (Clustering<?> c : crs) {
      evaluateClustering(db, rel, c);
    }
  }
Exemple #3
0
  @Override
  public void processNewResult(ResultHierarchy hier, Result result) {
    List<Clustering<?>> crs = ResultUtil.getClusteringResults(result);
    if (crs.size() < 1) {
      return;
    }
    Database db = ResultUtil.findDatabase(hier);
    Relation<O> rel = db.getRelation(distance.getInputTypeRestriction());
    DistanceQuery<O> dq = db.getDistanceQuery(rel, distance);

    for (Clustering<?> c : crs) {
      evaluateClustering(db, rel, dq, c);
    }
  }
  @Override
  public void processNewResult(HierarchicalResult baseResult, Result result) {
    final Database db = ResultUtil.findDatabase(baseResult);
    List<OutlierResult> ors = ResultUtil.filterResults(result, OutlierResult.class);
    if (ors == null || ors.size() <= 0) {
      // logger.warning("No outlier results found for
      // "+ComputeOutlierHistogram.class.getSimpleName());
      return;
    }

    for (OutlierResult or : ors) {
      db.getHierarchy().add(or, evaluateOutlierResult(db, or));
    }
  }
 protected void autoEvaluateClusterings(ResultHierarchy hier, Result newResult) {
   Collection<Clustering<?>> clusterings =
       ResultUtil.filterResults(hier, newResult, Clustering.class);
   if (LOG.isDebugging()) {
     LOG.warning("Number of new clustering results: " + clusterings.size());
   }
   for (Iterator<Clustering<?>> c = clusterings.iterator(); c.hasNext(); ) {
     Clustering<?> test = c.next();
     if ("allinone-clustering".equals(test.getShortName())) {
       c.remove();
     } else if ("allinnoise-clustering".equals(test.getShortName())) {
       c.remove();
     } else if ("bylabel-clustering".equals(test.getShortName())) {
       c.remove();
     } else if ("bymodel-clustering".equals(test.getShortName())) {
       c.remove();
     }
   }
   if (clusterings.size() > 0) {
     try {
       new EvaluateClustering(new ByLabelClustering(), false, true)
           .processNewResult(hier, newResult);
     } catch (NoSupportedDataTypeException e) {
       // Pass - the data probably did not have labels.
     }
   }
 }
 protected void autoEvaluateOutliers(ResultHierarchy hier, Result newResult) {
   Collection<OutlierResult> outliers =
       ResultUtil.filterResults(hier, newResult, OutlierResult.class);
   if (LOG.isDebugging()) {
     LOG.debug("Number of new outlier results: " + outliers.size());
   }
   if (outliers.size() > 0) {
     Database db = ResultUtil.findDatabase(hier);
     ResultUtil.ensureClusteringResult(db, db);
     Collection<Clustering<?>> clusterings = ResultUtil.filterResults(hier, db, Clustering.class);
     if (clusterings.size() == 0) {
       LOG.warning(
           "Could not find a clustering result, even after running 'ensureClusteringResult'?!?");
       return;
     }
     Clustering<?> basec = clusterings.iterator().next();
     // Find minority class label
     int min = Integer.MAX_VALUE;
     int total = 0;
     String label = null;
     if (basec.getAllClusters().size() > 1) {
       for (Cluster<?> c : basec.getAllClusters()) {
         final int csize = c.getIDs().size();
         total += csize;
         if (csize < min) {
           min = csize;
           label = c.getName();
         }
       }
     }
     if (label == null) {
       LOG.warning("Could not evaluate outlier results, as I could not find a minority label.");
       return;
     }
     if (min == 1) {
       LOG.warning(
           "The minority class label had a single object. Try using 'ClassLabelFilter' to identify the class label column.");
     }
     if (min > 0.05 * total) {
       LOG.warning(
           "The minority class I discovered (labeled '"
               + label
               + "') has "
               + (min * 100. / total)
               + "% of objects. Outlier classes should be more rare!");
     }
     LOG.verbose("Evaluating using minority class: " + label);
     Pattern pat = Pattern.compile("^" + Pattern.quote(label) + "$");
     // Evaluate rankings.
     new OutlierRankingEvaluation(pat).processNewResult(hier, newResult);
     // Compute ROC curve
     new OutlierROCCurve(pat).processNewResult(hier, newResult);
     // Compute Precision at k
     new OutlierPrecisionAtKCurve(pat, min << 1).processNewResult(hier, newResult);
     // Compute ROC curve
     new OutlierPrecisionRecallCurve(pat).processNewResult(hier, newResult);
     // Compute outlier histogram
     new ComputeOutlierHistogram(pat, 50, new LinearScaling(), false)
         .processNewResult(hier, newResult);
   }
 }