private double predictUsingCurtailment(Example example, ExtendedTree node) {
    double dPrediction = 0;

    if (node.isLeaf()) {
      dPrediction = predictAsLeaf(example, node);
    } else {
      boolean bEdgeConditionFound = false;
      Iterator<Edge> childIterator = node.childIterator();
      while ((childIterator.hasNext()) && (bEdgeConditionFound == false)) {
        Edge edge = childIterator.next();
        SplitCondition condition = edge.getCondition();
        if (condition.test(example)) {
          bEdgeConditionFound = true;
          ExtendedTree childTree = (ExtendedTree) edge.getChild();
          if (childTree.getTotalExamples() >= dCurtailmentThreshold)
            dPrediction = (predictUsingCurtailment(example, childTree));
          else dPrediction = predictAsLeaf(example, node);
        }
      }

      if (bEdgeConditionFound == false) {
        dPrediction = predictAsLeaf(example, node);
      }
    }

    return dPrediction;
  }
 @Override
 public String getEdgeName(String object) {
   SplitCondition condition = edgeMap.get(object);
   if (condition != null) {
     return condition.getRelation() + " " + condition.getValueString();
   } else {
     return null;
   }
 }
 @Override
 public String getVertexName(String object) {
   Tree node = vertexMap.get(object);
   String name = "";
   if (node != null) {
     if (node.isLeaf()) {
       name = node.getLabel();
     } else {
       Iterator<Edge> e = node.childIterator();
       while (e.hasNext()) {
         SplitCondition condition = e.next().getCondition();
         name = condition.getAttributeName();
         break;
       }
     }
   }
   return name;
 }
  @Override
  public Model learn(ExampleSet exampleSet) throws OperatorException {
    Attribute label = exampleSet.getAttributes().getLabel();
    RuleModel ruleModel = new RuleModel(exampleSet);

    double pureness = getParameterAsDouble(PARAMETER_PURENESS);
    TermDetermination termDetermination = new TermDetermination(new AccuracyCriterion(), 0.5d);
    ExampleSet trainingSet = (ExampleSet) exampleSet.clone();

    for (String labelName : label.getMapping().getValues()) {
      trainingSet.recalculateAttributeStatistics(label);
      int oldSize = -1;
      while (trainingSet.size() > 0
          && trainingSet.size() != oldSize
          && trainingSet.getStatistics(label, Statistics.COUNT, labelName) > 0) {
        Rule rule = new Rule(labelName);
        ExampleSet oldTrainingSet = (ExampleSet) trainingSet.clone();

        // grow rule
        int growOldSize = -1;
        ExampleSet growSet = (ExampleSet) trainingSet.clone();
        while (growSet.size() > 0
            && growSet.size() != growOldSize
            && !rule.isPure(growSet, pureness)
            && growSet.getAttributes().size() > 0) {
          SplitCondition term = termDetermination.getBestTerm(growSet, labelName);
          if (term == null) {
            break;
          }

          rule.addTerm(term);

          Attribute splitAttribute = growSet.getAttributes().get(term.getAttributeName());
          growSet.getAttributes().remove(splitAttribute);
          growOldSize = growSet.size();
          growSet = rule.getCovered(growSet);
        }

        // add rule if not empty
        if (rule.getTerms().size() > 0) {
          growSet = rule.getCovered(trainingSet);
          growSet.recalculateAttributeStatistics(label);
          int[] frequencies = new int[label.getMapping().size()];
          int counter = 0;
          for (String value : label.getMapping().getValues()) {
            frequencies[counter++] = (int) growSet.getStatistics(label, Statistics.COUNT, value);
          }
          rule.setFrequencies(frequencies);
          ruleModel.addRule(rule);
          oldSize = trainingSet.size();

          trainingSet = rule.removeCovered(oldTrainingSet);
        } else {
          break; // no other terms found for this class --> next class
        }

        trainingSet.recalculateAttributeStatistics(label);
      }
      checkForStop();
    }

    // training set not empty? add default rule
    if (trainingSet.size() > 0) {
      trainingSet.recalculateAttributeStatistics(label);
      int index = (int) trainingSet.getStatistics(label, Statistics.MODE);
      String defaultLabel = label.getMapping().mapIndex(index);
      Rule defaultRule = new Rule(defaultLabel);
      int[] frequencies = new int[label.getMapping().size()];
      int counter = 0;
      for (String value : label.getMapping().getValues()) {
        frequencies[counter++] = (int) trainingSet.getStatistics(label, Statistics.COUNT, value);
      }
      defaultRule.setFrequencies(frequencies);
      ruleModel.addRule(defaultRule);
    }

    return ruleModel;
  }