Exemple #1
0
 /**
  * Calculate the squared error of the neural network.
  *
  * @param x The input to the neural network.
  * @param y The expected output.
  * @return The squared error.
  */
 public double squaredError(Matrix x, Matrix y) {
   Matrix y_ = predict(x);
   double sumSquareWeights = 0;
   for (Layer layer : layers) sumSquareWeights += layer.weightMatrix.power(2).sum();
   double j =
       0.5 * y_.subtract(y).power(2).sum() / layers.get(0).getLayerSize().getInputSize()
           + lambda / 2 * sumSquareWeights;
   return j;
 }
Exemple #2
0
 /**
  * Give a prediction based on some input.
  *
  * @param input The input to the neural network which is equal in size to the number of input
  *     neurons.
  * @return The output of the neural network.
  */
 public Matrix predict(Matrix input) {
   if (input.getNumRows() != layers.get(0).getLayerSize().getInputSize()) {
     throw new InvalidParameterException(
         "Input size did not match the input size of the first layer");
   }
   Matrix modInput = (Matrix) input.clone();
   for (Layer l : layers) {
     modInput = l.activate(modInput);
   }
   return modInput;
 }
Exemple #3
0
    private Matrix createRandomMatrix(int rows, int cols) {
      Matrix random = new Matrix(rows, cols);
      return random.map(
          new Matrix.Function() {

            @Override
            public double function(double x) {
              return Math.random();
            }
          });
    }
Exemple #4
0
 /**
  * Calculate the cross entropy error of the neural network.
  *
  * @param x The input to the neural network.
  * @param y The expected output.
  * @return The cross entropy error.
  */
 public double crossEntropyError(Matrix x, Matrix y) {
   Matrix y_ = predict(x);
   double j =
       y_.multiply(
               y.map(
                   new Matrix.Function() {
                     @Override
                     public double function(double x) {
                       return Math.log(x);
                     }
                   }))
           .sum();
   return -j;
 }
Exemple #5
0
 /**
  * Applies the activation function to the processed input.
  *
  * @param input The input to the activation function.
  * @return The output of the activation function.
  */
 private Matrix applyFunction(Matrix input) {
   Matrix activated = (Matrix) input.clone();
   for (int row = 0; row < input.getNumRows(); row++)
     for (int col = 0; col < input.getNumCols(); col++)
       activated.set(row, col, function.activate(input.get(row, col)));
   if (function instanceof Softmax) {
     double sum = activated.sum();
     if (sum != 0) activated = activated.multiply(1 / sum);
   }
   return activated;
 }
Exemple #6
0
    private Matrix applyFunctionDerivative(Matrix input) {
      Matrix activated = (Matrix) input.clone();
      if (function instanceof Softmax)
        activated =
            activated.map(
                new Matrix.Function() {

                  @Override
                  public double function(double x) {
                    return Math.exp(x);
                  }
                });
      else
        activated =
            activated.map(
                new Matrix.Function() {

                  @Override
                  public double function(double x) {
                    return function.derivative(x);
                  }
                });

      if (function instanceof Softmax) {
        double sum = activated.sum();
        if (sum != 0) activated = activated.multiply(1 / sum);
        activated = activated.subtract(input);
        activated =
            activated.map(
                new Matrix.Function() {

                  @Override
                  public double function(double x) {
                    return function.activate(x);
                  }
                });
      }
      return activated;
    }
Exemple #7
0
 /**
  * Processes the input to the layer.
  *
  * @param input The input to the layer.
  * @return The output of the layer.
  */
 private Matrix activate(Matrix input) {
   inputMatrix = weightMatrix.dot(input).add(biasMatrix);
   Matrix y = applyFunction(inputMatrix);
   outputMatrix = y;
   return y;
 }
Exemple #8
0
 /**
  * Train the neural network to predict an output given some input.
  *
  * @param input The input to the neural network.
  * @param output The target output for the given input.
  * @param learningRate The rate at which the neural network learns. This is normally 0.01.
  * @return The error of the network as an mean cross entropy.
  */
 public double train(Matrix input, Matrix output, double learningRate) {
   double totalError = 0;
   if (input.getNumRows() == output.getNumRows()) {
     for (int i = 0; i < input.getNumRows(); i++) {
       Matrix inputRow = new Matrix(new double[][] {input.getRow(i)}).transpose();
       Matrix outputRow = new Matrix(new double[][] {output.getRow(i)}).transpose();
       Matrix netOutput = this.predict(inputRow);
       // Output layer
       Matrix previousDelta =
           outputRow
               .subtract(netOutput)
               .multiply(-1)
               .multiply(
                   layers
                       .get(layers.size() - 1)
                       .applyFunctionDerivative(layers.get(layers.size() - 1).inputMatrix));
       Matrix change =
           previousDelta
               .dot(layers.get(layers.size() - 2).outputMatrix.transpose())
               .add(layers.get(layers.size() - 1).weightMatrix.multiply(lambda));
       layers.get(layers.size() - 1).weightMatrix =
           layers.get(layers.size() - 1).weightMatrix.subtract(change.multiply(learningRate));
       // Hidden layers
       for (int l = layers.size() - 2; l > 0; l--) {
         previousDelta =
             layers
                 .get(l + 1)
                 .weightMatrix
                 .transpose()
                 .dot(previousDelta)
                 .multiply(layers.get(l).applyFunctionDerivative(layers.get(l).inputMatrix));
         change =
             previousDelta
                 .dot(layers.get(l - 1).outputMatrix.transpose())
                 .add(layers.get(l).weightMatrix.multiply(lambda));
         layers.get(l).weightMatrix =
             layers.get(l).weightMatrix.subtract(change.multiply(learningRate));
       }
       double error = squaredError(inputRow, outputRow);
       totalError += error;
     }
   }
   return totalError;
 }
Exemple #9
0
 /**
  * Set the weight matrix of a layer of the neural network.
  *
  * @param layer The layer number of the neural network.
  * @param weights The new weight matrix for the layer.
  */
 public void setWeights(int layer, Matrix weights) {
   layers.get(layer).weightMatrix = (Matrix) weights.clone();
 }
Exemple #10
0
 /**
  * Get the position of the most probable in an output array.
  *
  * @param output The output of the neural network (using Softmax)
  * @return The position of the most probable class.
  */
 public static int argMax(Matrix output) {
   double max = output.max();
   return output.find(max)[0];
 }