private static Mesh getMeshFromGrid(final ResultGrid resultGrid, float worldScale) { Vector3f translate = new Vector3f(resultGrid.minLocation.x, resultGrid.minLocation.y, resultGrid.minLocation.z); float scale = 1.0f / worldScale; Mesh mesh = MarchingCubesMesher.createMesh(resultGrid.dataGrid, scale, translate); // Setup bone weight buffer FloatBuffer weights = BufferUtils.createFloatBuffer(mesh.getVertexCount() * 4); VertexBuffer weightsBuf = new VertexBuffer(VertexBuffer.Type.HWBoneWeight); weightsBuf.setupData(VertexBuffer.Usage.Static, 4, VertexBuffer.Format.Float, weights); mesh.setBuffer(weightsBuf); // Setup bone index buffer ByteBuffer indices = BufferUtils.createByteBuffer(mesh.getVertexCount() * 4); VertexBuffer indicesBuf = new VertexBuffer(VertexBuffer.Type.HWBoneIndex); indicesBuf.setupData(VertexBuffer.Usage.Static, 4, VertexBuffer.Format.UnsignedByte, indices); mesh.setBuffer(indicesBuf); Vector3f v1 = new Vector3f(); Vector3f v2 = new Vector3f(); Vector3f v3 = new Vector3f(); for (int i = 0; i < mesh.getTriangleCount(); i++) { mesh.getTriangle(i, v1, v2, v3); putBoneData(weights, indices, v1, resultGrid, scale, translate); putBoneData(weights, indices, v2, resultGrid, scale, translate); putBoneData(weights, indices, v3, resultGrid, scale, translate); } return mesh; }
public static void convertToFixed(Geometry geom, Format posFmt, Format nmFmt, Format tcFmt) { geom.updateModelBound(); BoundingBox bbox = (BoundingBox) geom.getModelBound(); Mesh mesh = geom.getMesh(); VertexBuffer positions = mesh.getBuffer(Type.Position); VertexBuffer normals = mesh.getBuffer(Type.Normal); VertexBuffer texcoords = mesh.getBuffer(Type.TexCoord); VertexBuffer indices = mesh.getBuffer(Type.Index); // positions FloatBuffer fb = (FloatBuffer) positions.getData(); if (posFmt != Format.Float) { Buffer newBuf = VertexBuffer.createBuffer(posFmt, positions.getNumComponents(), mesh.getVertexCount()); Transform t = convertPositions(fb, bbox, newBuf); t.combineWithParent(geom.getLocalTransform()); geom.setLocalTransform(t); VertexBuffer newPosVb = new VertexBuffer(Type.Position); newPosVb.setupData(positions.getUsage(), positions.getNumComponents(), posFmt, newBuf); mesh.clearBuffer(Type.Position); mesh.setBuffer(newPosVb); } // normals, automatically convert to signed byte fb = (FloatBuffer) normals.getData(); ByteBuffer bb = BufferUtils.createByteBuffer(fb.capacity()); convertNormals(fb, bb); normals = new VertexBuffer(Type.Normal); normals.setupData(Usage.Static, 3, Format.Byte, bb); normals.setNormalized(true); mesh.clearBuffer(Type.Normal); mesh.setBuffer(normals); // texcoords fb = (FloatBuffer) texcoords.getData(); if (tcFmt != Format.Float) { Buffer newBuf = VertexBuffer.createBuffer(tcFmt, texcoords.getNumComponents(), mesh.getVertexCount()); convertTexCoords2D(fb, newBuf); VertexBuffer newTcVb = new VertexBuffer(Type.TexCoord); newTcVb.setupData(texcoords.getUsage(), texcoords.getNumComponents(), tcFmt, newBuf); mesh.clearBuffer(Type.TexCoord); mesh.setBuffer(newTcVb); } }
public static void compressIndexBuffer(Mesh mesh) { int vertCount = mesh.getVertexCount(); VertexBuffer vb = mesh.getBuffer(Type.Index); Format targetFmt; if (vb.getFormat() == Format.UnsignedInt && vertCount <= 0xffff) { if (vertCount <= 256) targetFmt = Format.UnsignedByte; else targetFmt = Format.UnsignedShort; } else if (vb.getFormat() == Format.UnsignedShort && vertCount <= 0xff) { targetFmt = Format.UnsignedByte; } else { return; } IndexBuffer src = mesh.getIndexBuffer(); Buffer newBuf = VertexBuffer.createBuffer(targetFmt, vb.getNumComponents(), src.size()); VertexBuffer newVb = new VertexBuffer(Type.Index); newVb.setupData(vb.getUsage(), vb.getNumComponents(), targetFmt, newBuf); mesh.clearBuffer(Type.Index); mesh.setBuffer(newVb); IndexBuffer dst = mesh.getIndexBuffer(); for (int i = 0; i < src.size(); i++) { dst.put(i, src.get(i)); } }
public RenderDeviceJme(NiftyJmeDisplay display) { this.display = display; quadColor = new VertexBuffer(Type.Color); quadColor.setNormalized(true); ByteBuffer bb = BufferUtils.createByteBuffer(4 * 4); quadColor.setupData(Usage.Stream, 4, Format.UnsignedByte, bb); quad.setBuffer(quadColor); quadModTC.setUsage(Usage.Stream); // Load the 3 material types separately to avoid // reloading the shader when the defines change. // Material with a single color (no texture or vertex color) colorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); // Material with a texture and a color (no vertex color) textureColorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); // Material with vertex color, used for gradients (no texture) vertexColorMaterial = new Material(display.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md"); vertexColorMaterial.setBoolean("VertexColor", true); // Shared render state for all materials renderState.setDepthTest(false); renderState.setDepthWrite(false); }
public static VertexBuffer convertToUByte(VertexBuffer vb) { FloatBuffer fb = (FloatBuffer) vb.getData(); ByteBuffer bb = BufferUtils.createByteBuffer(fb.capacity()); convertToUByte(fb, bb); VertexBuffer newVb = new VertexBuffer(vb.getBufferType()); newVb.setupData(vb.getUsage(), vb.getNumComponents(), Format.UnsignedByte, bb); newVb.setNormalized(true); return newVb; }
public static VertexBuffer convertToFloat(VertexBuffer vb) { if (vb.getFormat() == Format.Float) return vb; IntBuffer ib = (IntBuffer) vb.getData(); FloatBuffer fb = BufferUtils.createFloatBuffer(ib.capacity()); convertToFloat(ib, fb); VertexBuffer newVb = new VertexBuffer(vb.getBufferType()); newVb.setupData(vb.getUsage(), vb.getNumComponents(), Format.Float, fb); return newVb; }
public static void generate(Mesh mesh, boolean approxTangents, boolean splitMirrored) { int[] index = new int[3]; Vector3f[] v = new Vector3f[3]; Vector2f[] t = new Vector2f[3]; for (int i = 0; i < 3; i++) { v[i] = new Vector3f(); t[i] = new Vector2f(); } if (mesh.getBuffer(Type.Normal) == null) { throw new IllegalArgumentException("The given mesh has no normal data!"); } List<VertexData> vertices; switch (mesh.getMode()) { case Triangles: vertices = processTriangles(mesh, index, v, t, splitMirrored); if (splitMirrored) { splitVertices(mesh, vertices, splitMirrored); } break; case TriangleStrip: vertices = processTriangleStrip(mesh, index, v, t); break; case TriangleFan: vertices = processTriangleFan(mesh, index, v, t); break; default: throw new UnsupportedOperationException(mesh.getMode() + " is not supported."); } processTriangleData(mesh, vertices, approxTangents, splitMirrored); // if the mesh has a bind pose, we need to generate the bind pose for the tangent buffer if (mesh.getBuffer(Type.BindPosePosition) != null) { VertexBuffer tangents = mesh.getBuffer(Type.Tangent); if (tangents != null) { VertexBuffer bindTangents = new VertexBuffer(Type.BindPoseTangent); bindTangents.setupData( Usage.CpuOnly, 4, Format.Float, BufferUtils.clone(tangents.getData())); if (mesh.getBuffer(Type.BindPoseTangent) != null) { mesh.clearBuffer(Type.BindPoseTangent); } mesh.setBuffer(bindTangents); tangents.setUsage(Usage.Stream); } } }
/** * Merges all geometries in the collection into the output mesh. Creates a new material using the * TextureAtlas. * * @param geometries * @param outMesh */ public static void mergeGeometries(Collection<Geometry> geometries, Mesh outMesh) { int[] compsForBuf = new int[VertexBuffer.Type.values().length]; Format[] formatForBuf = new Format[compsForBuf.length]; int totalVerts = 0; int totalTris = 0; int totalLodLevels = 0; int maxWeights = -1; Mode mode = null; for (Geometry geom : geometries) { totalVerts += geom.getVertexCount(); totalTris += geom.getTriangleCount(); totalLodLevels = Math.min(totalLodLevels, geom.getMesh().getNumLodLevels()); Mode listMode; int components; switch (geom.getMesh().getMode()) { case Points: listMode = Mode.Points; components = 1; break; case LineLoop: case LineStrip: case Lines: listMode = Mode.Lines; components = 2; break; case TriangleFan: case TriangleStrip: case Triangles: listMode = Mode.Triangles; components = 3; break; default: throw new UnsupportedOperationException(); } for (VertexBuffer vb : geom.getMesh().getBufferList().getArray()) { int currentCompsForBuf = compsForBuf[vb.getBufferType().ordinal()]; if (vb.getBufferType() != Type.Index && currentCompsForBuf != 0 && currentCompsForBuf != vb.getNumComponents()) { throw new UnsupportedOperationException( "The geometry " + geom + " buffer " + vb.getBufferType() + " has different number of components than the rest of the meshes " + "(this: " + vb.getNumComponents() + ", expected: " + currentCompsForBuf + ")"); } compsForBuf[vb.getBufferType().ordinal()] = vb.getNumComponents(); formatForBuf[vb.getBufferType().ordinal()] = vb.getFormat(); } maxWeights = Math.max(maxWeights, geom.getMesh().getMaxNumWeights()); if (mode != null && mode != listMode) { throw new UnsupportedOperationException( "Cannot combine different" + " primitive types: " + mode + " != " + listMode); } mode = listMode; compsForBuf[Type.Index.ordinal()] = components; } outMesh.setMaxNumWeights(maxWeights); outMesh.setMode(mode); if (totalVerts >= 65536) { // make sure we create an UnsignedInt buffer so // we can fit all of the meshes formatForBuf[Type.Index.ordinal()] = Format.UnsignedInt; } else { formatForBuf[Type.Index.ordinal()] = Format.UnsignedShort; } // generate output buffers based on retrieved info for (int i = 0; i < compsForBuf.length; i++) { if (compsForBuf[i] == 0) { continue; } Buffer data; if (i == Type.Index.ordinal()) { data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalTris); } else { data = VertexBuffer.createBuffer(formatForBuf[i], compsForBuf[i], totalVerts); } VertexBuffer vb = new VertexBuffer(Type.values()[i]); vb.setupData(Usage.Static, compsForBuf[i], formatForBuf[i], data); outMesh.setBuffer(vb); } int globalVertIndex = 0; int globalTriIndex = 0; for (Geometry geom : geometries) { Mesh inMesh = geom.getMesh(); geom.computeWorldMatrix(); Matrix4f worldMatrix = geom.getWorldMatrix(); int geomVertCount = inMesh.getVertexCount(); int geomTriCount = inMesh.getTriangleCount(); for (int bufType = 0; bufType < compsForBuf.length; bufType++) { VertexBuffer inBuf = inMesh.getBuffer(Type.values()[bufType]); VertexBuffer outBuf = outMesh.getBuffer(Type.values()[bufType]); if (inBuf == null || outBuf == null) { continue; } if (Type.Index.ordinal() == bufType) { int components = compsForBuf[bufType]; IndexBuffer inIdx = inMesh.getIndicesAsList(); IndexBuffer outIdx = outMesh.getIndexBuffer(); for (int tri = 0; tri < geomTriCount; tri++) { for (int comp = 0; comp < components; comp++) { int idx = inIdx.get(tri * components + comp) + globalVertIndex; outIdx.put((globalTriIndex + tri) * components + comp, idx); } } } else if (Type.Position.ordinal() == bufType) { FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly(); FloatBuffer outPos = (FloatBuffer) outBuf.getData(); doTransformVerts(inPos, globalVertIndex, outPos, worldMatrix); } else if (Type.Normal.ordinal() == bufType) { FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly(); FloatBuffer outPos = (FloatBuffer) outBuf.getData(); doTransformNorms(inPos, globalVertIndex, outPos, worldMatrix); } else if (Type.Tangent.ordinal() == bufType) { FloatBuffer inPos = (FloatBuffer) inBuf.getDataReadOnly(); FloatBuffer outPos = (FloatBuffer) outBuf.getData(); int components = inBuf.getNumComponents(); doTransformTangents(inPos, globalVertIndex, components, outPos, worldMatrix); } else { inBuf.copyElements(0, outBuf, globalVertIndex, geomVertCount); } } globalVertIndex += geomVertCount; globalTriIndex += geomTriCount; } }
/** * This method returns an array of size 2. The first element is a vertex buffer holding bone * weights for every vertex in the model. The second element is a vertex buffer holding bone * indices for vertices (the indices of bones the vertices are assigned to). * * @param meshStructure the mesh structure object * @param vertexListSize a number of vertices in the model * @param bonesGroups this is an output parameter, it should be a one-sized array; the maximum * amount of weights per vertex (up to MAXIMUM_WEIGHTS_PER_VERTEX) is stored there * @param vertexReferenceMap this reference map allows to map the original vertices read from * blender to vertices that are really in the model; one vertex may appear several times in * the result model * @param groupToBoneIndexMap this object maps the group index (to which a vertices in blender * belong) to bone index of the model * @param blenderContext the blender context * @return arrays of vertices weights and their bone indices and (as an output parameter) the * maximum amount of weights for a vertex * @throws BlenderFileException this exception is thrown when the blend file structure is somehow * invalid or corrupted */ private VertexBuffer[] getBoneWeightAndIndexBuffer( Structure meshStructure, int vertexListSize, int[] bonesGroups, Map<Integer, List<Integer>> vertexReferenceMap, Map<Integer, Integer> groupToBoneIndexMap, BlenderContext blenderContext) throws BlenderFileException { Pointer pDvert = (Pointer) meshStructure.getFieldValue("dvert"); // dvert = DeformVERTices FloatBuffer weightsFloatData = BufferUtils.createFloatBuffer(vertexListSize * MAXIMUM_WEIGHTS_PER_VERTEX); ByteBuffer indicesData = BufferUtils.createByteBuffer(vertexListSize * MAXIMUM_WEIGHTS_PER_VERTEX); if (pDvert.isNotNull()) { // assigning weights and bone indices List<Structure> dverts = pDvert.fetchData( blenderContext.getInputStream()); // dverts.size() == verticesAmount (one dvert per // vertex in blender) int vertexIndex = 0; for (Structure dvert : dverts) { int totweight = ((Number) dvert.getFieldValue("totweight")) .intValue(); // total amount of weights assignet to the vertex // (max. 4 in JME) Pointer pDW = (Pointer) dvert.getFieldValue("dw"); List<Integer> vertexIndices = vertexReferenceMap.get( Integer.valueOf(vertexIndex)); // we fetch the referenced vertices here if (totweight > 0 && pDW.isNotNull() && groupToBoneIndexMap != null) { // pDW should never be null here, but I check it just in case :) int weightIndex = 0; List<Structure> dw = pDW.fetchData(blenderContext.getInputStream()); for (Structure deformWeight : dw) { Integer boneIndex = groupToBoneIndexMap.get(((Number) deformWeight.getFieldValue("def_nr")).intValue()); // Remove this code if 4 weights limitation is removed if (weightIndex == 4) { LOGGER.log( Level.WARNING, "{0} has more than 4 weight on bone index {1}", new Object[] {meshStructure.getName(), boneIndex}); break; } if (boneIndex != null) { // null here means that we came accross group that has no bone attached // to float weight = ((Number) deformWeight.getFieldValue("weight")).floatValue(); if (weight == 0.0f) { weight = 1; boneIndex = Integer.valueOf(0); } // we apply the weight to all referenced vertices for (Integer index : vertexIndices) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX + weightIndex, weight); indicesData.put( index * MAXIMUM_WEIGHTS_PER_VERTEX + weightIndex, boneIndex.byteValue()); } } ++weightIndex; } } else { for (Integer index : vertexIndices) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, 1.0f); indicesData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, (byte) 0); } } ++vertexIndex; } } else { // always bind all vertices to 0-indexed bone // this bone makes the model look normally if vertices have no bone assigned // and it is used in object animation, so if we come accross object animation // we can use the 0-indexed bone for this for (List<Integer> vertexIndexList : vertexReferenceMap.values()) { // we apply the weight to all referenced vertices for (Integer index : vertexIndexList) { weightsFloatData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, 1.0f); indicesData.put(index * MAXIMUM_WEIGHTS_PER_VERTEX, (byte) 0); } } } bonesGroups[0] = this.endBoneAssigns(vertexListSize, weightsFloatData); VertexBuffer verticesWeights = new VertexBuffer(Type.BoneWeight); verticesWeights.setupData(Usage.CpuOnly, bonesGroups[0], Format.Float, weightsFloatData); VertexBuffer verticesWeightsIndices = new VertexBuffer(Type.BoneIndex); verticesWeightsIndices.setupData( Usage.CpuOnly, bonesGroups[0], Format.UnsignedByte, indicesData); return new VertexBuffer[] {verticesWeights, verticesWeightsIndices}; }