@Override
 public void simpleUpdate(float tpf) {
   time += tpf;
   int random = rand.nextInt(2000);
   float mult1 = 1.0f;
   float mult2 = 1.0f;
   if (random < 500) {
     mult1 = 1.0f;
     mult2 = 1.0f;
   } else if (random < 1000) {
     mult1 = -1.0f;
     mult2 = 1.0f;
   } else if (random < 1500) {
     mult1 = 1.0f;
     mult2 = -1.0f;
   } else if (random <= 2000) {
     mult1 = -1.0f;
     mult2 = -1.0f;
   }
   box = batchNode.getChild("Box" + random);
   if (box != null) {
     Vector3f v = box.getLocalTranslation();
     box.setLocalTranslation(
         v.x + FastMath.sin(time * mult1) * 20,
         v.y + (FastMath.sin(time * mult1) * FastMath.cos(time * mult1) * 20),
         v.z + FastMath.cos(time * mult2) * 20);
   }
   terrain.setLocalRotation(new Quaternion().fromAngleAxis(time, Vector3f.UNIT_Y));
 }
Exemple #2
0
  public void generateRandomAsteroid() {
    Material asteroidMaterial = new Material(assetManager, "Common/MatDefs/Light/Lighting.j3md");
    asteroidMaterial.setTexture(
        "DiffuseMap", assetManager.loadTexture("Textures/Asteroid/Solid.png"));
    asteroidMaterial.setTexture(
        "NormalMap", assetManager.loadTexture("Textures/Asteroid/Normal.png"));

    Asteroid asteroid =
        new Asteroid("Asteroid", assetManager.loadModel("Models/Asteroid.j3o"), asteroidMaterial);

    asteroid.getModel().scale((float) Math.random() / 2);

    if (Math.random() * noComet < 0.05) {
      asteroid.getModel().scale((float) Math.random() / 2);
      asteroid.addTrail(
          new Material(assetManager, "Common/MatDefs/Misc/Particle.j3md"),
          assetManager.loadTexture("Effects/Explosion/flame.png"));
      asteroid.setSpeed((int) (Math.random() * 4) + 10);
      noComet = 1;
    } else {
      asteroid.setSpeed((int) (Math.random() * 4) + 4);
      noComet -= 0.05;
    }

    rootNode.attachChild(asteroid);

    float theta = (float) (2 * FastMath.PI * Math.random());
    float phi = (float) (2 * FastMath.PI * Math.random());
    float r = 120;

    float x = r * FastMath.cos(theta) * FastMath.sin(phi);
    float y = r * FastMath.sin(theta) * FastMath.cos(phi);
    float z = r * FastMath.cos(phi);

    asteroid.setLocalTranslation(x, y, z);
    asteroid.setDirection(
        planets[2]
            .getGeom()
            .getWorldTranslation()
            .subtract(asteroid.getLocalTranslation())
            .normalize());
    asteroid.setRotation(
        new Vector3f((float) Math.random(), (float) Math.random(), (float) Math.random())
            .normalize());
    asteroid.registerPhysics(bap.getPhysicsSpace());
    asteroids.attachChild(asteroid);
  }
 @Override
 protected void controlUpdate(float tpf) {
   light.setPosition(spatial.getWorldTranslation().add(0, 0, 32));
   flicker += 8 * tpf;
   float radius =
       FastMath.sin(FastMath.tan(FastMath.cos(flicker + (FastMath.rand.nextFloat() * 2)))) * 20
           + 200;
   light.setRadius(radius);
 }
  /**
   * Rebuilds the cylinder based on a new set of parameters.
   *
   * @param axisSamples the number of samples along the axis.
   * @param radialSamples the number of samples around the radial.
   * @param radius the radius of the bottom of the cylinder.
   * @param radius2 the radius of the top of the cylinder.
   * @param height the cylinder's height.
   * @param closed should the cylinder have top and bottom surfaces.
   * @param inverted is the cylinder is meant to be viewed from the inside.
   */
  public void updateGeometry(
      int axisSamples,
      int radialSamples,
      float radius,
      float radius2,
      float height,
      boolean closed,
      boolean inverted) {
    this.axisSamples = axisSamples + (closed ? 2 : 0);
    this.radialSamples = radialSamples;
    this.radius = radius;
    this.radius2 = radius2;
    this.height = height;
    this.closed = closed;
    this.inverted = inverted;

    //        VertexBuffer pvb = getBuffer(Type.Position);
    //        VertexBuffer nvb = getBuffer(Type.Normal);
    //        VertexBuffer tvb = getBuffer(Type.TexCoord);

    // Vertices
    int vertCount = axisSamples * (radialSamples + 1) + (closed ? 2 : 0);

    setBuffer(Type.Position, 3, createVector3Buffer(getFloatBuffer(Type.Position), vertCount));

    // Normals
    setBuffer(Type.Normal, 3, createVector3Buffer(getFloatBuffer(Type.Normal), vertCount));

    // Texture co-ordinates
    setBuffer(Type.TexCoord, 2, createVector2Buffer(vertCount));

    int triCount = ((closed ? 2 : 0) + 2 * (axisSamples - 1)) * radialSamples;

    setBuffer(Type.Index, 3, createShortBuffer(getShortBuffer(Type.Index), 3 * triCount));

    // generate geometry
    float inverseRadial = 1.0f / radialSamples;
    float inverseAxisLess = 1.0f / (closed ? axisSamples - 3 : axisSamples - 1);
    float inverseAxisLessTexture = 1.0f / (axisSamples - 1);
    float halfHeight = 0.5f * height;

    // Generate points on the unit circle to be used in computing the mesh
    // points on a cylinder slice.
    float[] sin = new float[radialSamples + 1];
    float[] cos = new float[radialSamples + 1];

    for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
      float angle = FastMath.TWO_PI * inverseRadial * radialCount;
      cos[radialCount] = FastMath.cos(angle);
      sin[radialCount] = FastMath.sin(angle);
    }
    sin[radialSamples] = sin[0];
    cos[radialSamples] = cos[0];

    // calculate normals
    Vector3f[] vNormals = null;
    Vector3f vNormal = Vector3f.UNIT_Z;

    if ((height != 0.0f) && (radius != radius2)) {
      vNormals = new Vector3f[radialSamples];
      Vector3f vHeight = Vector3f.UNIT_Z.mult(height);
      Vector3f vRadial = new Vector3f();

      for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
        vRadial.set(cos[radialCount], sin[radialCount], 0.0f);
        Vector3f vRadius = vRadial.mult(radius);
        Vector3f vRadius2 = vRadial.mult(radius2);
        Vector3f vMantle = vHeight.subtract(vRadius2.subtract(vRadius));
        Vector3f vTangent = vRadial.cross(Vector3f.UNIT_Z);
        vNormals[radialCount] = vMantle.cross(vTangent).normalize();
      }
    }

    FloatBuffer nb = getFloatBuffer(Type.Normal);
    FloatBuffer pb = getFloatBuffer(Type.Position);
    FloatBuffer tb = getFloatBuffer(Type.TexCoord);

    // generate the cylinder itself
    Vector3f tempNormal = new Vector3f();
    for (int axisCount = 0, i = 0; axisCount < axisSamples; axisCount++, i++) {
      float axisFraction;
      float axisFractionTexture;
      int topBottom = 0;
      if (!closed) {
        axisFraction = axisCount * inverseAxisLess; // in [0,1]
        axisFractionTexture = axisFraction;
      } else {
        if (axisCount == 0) {
          topBottom = -1; // bottom
          axisFraction = 0;
          axisFractionTexture = inverseAxisLessTexture;
        } else if (axisCount == axisSamples - 1) {
          topBottom = 1; // top
          axisFraction = 1;
          axisFractionTexture = 1 - inverseAxisLessTexture;
        } else {
          axisFraction = (axisCount - 1) * inverseAxisLess;
          axisFractionTexture = axisCount * inverseAxisLessTexture;
        }
      }

      // compute center of slice
      float z = -halfHeight + height * axisFraction;
      Vector3f sliceCenter = new Vector3f(0, 0, z);

      // compute slice vertices with duplication at end point
      int save = i;
      for (int radialCount = 0; radialCount < radialSamples; radialCount++, i++) {
        float radialFraction = radialCount * inverseRadial; // in [0,1)
        tempNormal.set(cos[radialCount], sin[radialCount], 0.0f);

        if (vNormals != null) {
          vNormal = vNormals[radialCount];
        } else if (radius == radius2) {
          vNormal = tempNormal;
        }

        if (topBottom == 0) {
          if (!inverted) nb.put(vNormal.x).put(vNormal.y).put(vNormal.z);
          else nb.put(-vNormal.x).put(-vNormal.y).put(-vNormal.z);
        } else {
          nb.put(0).put(0).put(topBottom * (inverted ? -1 : 1));
        }

        tempNormal.multLocal((radius - radius2) * axisFraction + radius2).addLocal(sliceCenter);
        pb.put(tempNormal.x).put(tempNormal.y).put(tempNormal.z);

        tb.put((inverted ? 1 - radialFraction : radialFraction)).put(axisFractionTexture);
      }

      BufferUtils.copyInternalVector3(pb, save, i);
      BufferUtils.copyInternalVector3(nb, save, i);

      tb.put((inverted ? 0.0f : 1.0f)).put(axisFractionTexture);
    }

    if (closed) {
      pb.put(0).put(0).put(-halfHeight); // bottom center
      nb.put(0).put(0).put(-1 * (inverted ? -1 : 1));
      tb.put(0.5f).put(0);
      pb.put(0).put(0).put(halfHeight); // top center
      nb.put(0).put(0).put(1 * (inverted ? -1 : 1));
      tb.put(0.5f).put(1);
    }

    IndexBuffer ib = getIndexBuffer();
    int index = 0;
    // Connectivity
    for (int axisCount = 0, axisStart = 0; axisCount < axisSamples - 1; axisCount++) {
      int i0 = axisStart;
      int i1 = i0 + 1;
      axisStart += radialSamples + 1;
      int i2 = axisStart;
      int i3 = i2 + 1;
      for (int i = 0; i < radialSamples; i++) {
        if (closed && axisCount == 0) {
          if (!inverted) {
            ib.put(index++, i0++);
            ib.put(index++, vertCount - 2);
            ib.put(index++, i1++);
          } else {
            ib.put(index++, i0++);
            ib.put(index++, i1++);
            ib.put(index++, vertCount - 2);
          }
        } else if (closed && axisCount == axisSamples - 2) {
          ib.put(index++, i2++);
          ib.put(index++, inverted ? vertCount - 1 : i3++);
          ib.put(index++, inverted ? i3++ : vertCount - 1);
        } else {
          ib.put(index++, i0++);
          ib.put(index++, inverted ? i2 : i1);
          ib.put(index++, inverted ? i1 : i2);
          ib.put(index++, i1++);
          ib.put(index++, inverted ? i2++ : i3++);
          ib.put(index++, inverted ? i3++ : i2++);
        }
      }
    }

    updateBound();
  }
 public static Vector3f getVectorFromAngle(float angle) {
   return new Vector3f(FastMath.cos(angle), FastMath.sin(angle), 0);
 }