/** * Estimates module size (pixels in a module) based on the Start and End finder patterns. * * @param vertices an array of vertices: vertices[0] x, y top left barcode vertices[1] x, y bottom * left barcode vertices[2] x, y top right barcode vertices[3] x, y bottom right barcode * vertices[4] x, y top left codeword area vertices[5] x, y bottom left codeword area * vertices[6] x, y top right codeword area vertices[7] x, y bottom right codeword area * @return the module size. */ private static float computeModuleWidth(ResultPoint[] vertices) { float pixels1 = ResultPoint.distance(vertices[0], vertices[4]); float pixels2 = ResultPoint.distance(vertices[1], vertices[5]); float moduleWidth1 = (pixels1 + pixels2) / (17 * 2.0f); float pixels3 = ResultPoint.distance(vertices[6], vertices[2]); float pixels4 = ResultPoint.distance(vertices[7], vertices[3]); float moduleWidth2 = (pixels3 + pixels4) / (18 * 2.0f); return (moduleWidth1 + moduleWidth2) / 2.0f; }
/** * Computes the dimension (number of modules in a row) of the PDF417 Code based on vertices of the * codeword area and estimated module size. * * @param topLeft of codeword area * @param topRight of codeword area * @param bottomLeft of codeword area * @param bottomRight of codeword are * @param moduleWidth estimated module size * @return the number of modules in a row. */ private static int computeDimension( ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint bottomRight, float moduleWidth) { int topRowDimension = round(ResultPoint.distance(topLeft, topRight) / moduleWidth); int bottomRowDimension = round(ResultPoint.distance(bottomLeft, bottomRight) / moduleWidth); return ((((topRowDimension + bottomRowDimension) >> 1) + 8) / 17) * 17; /* * int topRowDimension = round(ResultPoint.distance(topLeft, topRight)); * //moduleWidth); int bottomRowDimension = * round(ResultPoint.distance(bottomLeft, bottomRight)); // * moduleWidth); int dimension = ((topRowDimension + bottomRowDimension) * >> 1); // Round up to nearest 17 modules i.e. there are 17 modules * per codeword //int dimension = ((((topRowDimension + * bottomRowDimension) >> 1) + 8) / 17) * 17; return dimension; */ }
/** * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are those * that have been detected at least {@link #CENTER_QUORUM} times, and whose module size * differs from the average among those patterns the least * @throws NotFoundException if 3 such finder patterns do not exist */ private FinderPattern[][] selectMutipleBestPatterns() throws NotFoundException { List<FinderPattern> possibleCenters = getPossibleCenters(); int size = possibleCenters.size(); if (size < 3) { // Couldn't find enough finder patterns throw NotFoundException.getNotFoundInstance(); } /* * Begin HE modifications to safely detect multiple codes of equal size */ if (size == 3) { return new FinderPattern[][] { new FinderPattern[] {possibleCenters.get(0), possibleCenters.get(1), possibleCenters.get(2)} }; } // Sort by estimated module size to speed up the upcoming checks Collections.sort(possibleCenters, new ModuleSizeComparator()); /* * Now lets start: build a list of tuples of three finder locations that * - feature similar module sizes * - are placed in a distance so the estimated module count is within the QR specification * - have similar distance between upper left/right and left top/bottom finder patterns * - form a triangle with 90° angle (checked by comparing top right/bottom left distance * with pythagoras) * * Note: we allow each point to be used for more than one code region: this might seem * counterintuitive at first, but the performance penalty is not that big. At this point, * we cannot make a good quality decision whether the three finders actually represent * a QR code, or are just by chance layouted so it looks like there might be a QR code there. * So, if the layout seems right, lets have the decoder try to decode. */ List<FinderPattern[]> results = new ArrayList<>(); // holder for the results for (int i1 = 0; i1 < (size - 2); i1++) { FinderPattern p1 = possibleCenters.get(i1); if (p1 == null) { continue; } for (int i2 = i1 + 1; i2 < (size - 1); i2++) { FinderPattern p2 = possibleCenters.get(i2); if (p2 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) / Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize()); float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()); if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } for (int i3 = i2 + 1; i3 < size; i3++) { FinderPattern p3 = possibleCenters.get(i3); if (p3 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) / Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize()); float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()); if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } FinderPattern[] test = {p1, p2, p3}; ResultPoint.orderBestPatterns(test); // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal FinderPatternInfo info = new FinderPatternInfo(test); float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft()); float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft()); float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight()); // Check the sizes float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f); if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) { continue; } // Calculate the difference of the edge lengths in percent float vABBC = Math.abs((dA - dB) / Math.min(dA, dB)); if (vABBC >= 0.1f) { continue; } // Calculate the diagonal length by assuming a 90° angle at topleft float dCpy = (float) Math.sqrt(dA * dA + dB * dB); // Compare to the real distance in % float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy)); if (vPyC >= 0.1f) { continue; } // All tests passed! results.add(test); } // end iterate p3 } // end iterate p2 } // end iterate p1 if (!results.isEmpty()) { return results.toArray(new FinderPattern[results.size()][]); } // Nothing found! throw NotFoundException.getNotFoundInstance(); }