public void terminate(ClusModel model) throws IOException {
   CompleteTreeIterator iter = new CompleteTreeIterator((ClusNode) model);
   while (iter.hasMoreNodes()) {
     ClusNode node = (ClusNode) iter.getNextNode();
     node.getClusteringStat().calcMean();
   }
 }
 public void initialize(ClusModel model, ClusSchema schema) {
   CompleteTreeIterator iter = new CompleteTreeIterator((ClusNode) model);
   while (iter.hasMoreNodes()) {
     ClusNode node = (ClusNode) iter.getNextNode();
     ClusStatistic stat = m_Clone.cloneStat();
     node.setClusteringStat(stat);
     stat.setSDataSize(1);
   }
 }
 public final void printTree(PrintWriter writer, String prefix) {
   int lvc = 0;
   for (int i = 0; i < m_Folds.length; i++) {
     ClusNode node = m_Nodes[i];
     if (!node.hasBestTest()) {
       if (lvc != 0) writer.print(", ");
       writer.print(m_Folds[i] + ": ");
       writer.print(ClusFormat.ONE_AFTER_DOT.format(node.getTotWeight()));
       lvc++;
     }
   }
   if (lvc > 0) {
     writer.print(" ");
     showPath(getPath(), writer);
   }
   int nb = getNbChildren();
   if (nb > 0) {
     if (lvc > 0) {
       writer.println();
       writer.print(prefix);
     }
   } else {
     writer.println();
   }
   for (int i = 0; i < nb; i++) {
     OptXValSplit split = (OptXValSplit) getChild(i);
     if (i != 0) {
       writer.println(prefix + "|  ");
       writer.print(prefix);
     }
     writer.print("G" + i + " ");
     writer.print(MyIntArray.print(split.getFolds()));
     writer.print(" - ");
     writer.print(split.getTest().getString());
     writer.println();
     int mb = split.getNbChildren();
     String gfix = (i != nb - 1) ? "|  " : "   ";
     for (int j = 0; j < mb; j++) {
       OptXValNode node = (OptXValNode) split.getChild(j);
       String suffix = (j != mb - 1) ? "|      " : "       ";
       if (j == 0) writer.print(prefix + gfix + "+-yes: ");
       else {
         writer.println(prefix + gfix + "|");
         writer.print(prefix + gfix + "+-no:  ");
       }
       node.printTree(writer, prefix + gfix + suffix);
     }
   }
   writer.flush();
 }
Exemple #4
0
 public void prune(ClusNode node) {
   RegressionStat stat = (RegressionStat) node.getClusteringStat();
   m_GlobalDeviation = Math.sqrt(stat.getSVarS(m_ClusteringWeights) / stat.getTotalWeight());
   pruneRecursive(node);
   // System.out.println("Performing test of M5 pruning");
   // TestM5PruningRuleNode.performTest(orig, node, m_GlobalDeviation, m_TargetWeights,
   // m_TrainingData);
 }
 public final ClusNode getTree(int fold) {
   int idx = Arrays.binarySearch(m_Folds, fold);
   ClusNode node = m_Nodes[idx];
   if (node.hasBestTest() && node.atBottomLevel()) {
     OptXValSplit split = null;
     int nb = getNbChildren();
     for (int i = 0; i < nb; i++) {
       OptXValSplit msplit = (OptXValSplit) getChild(i);
       if (msplit.contains(fold)) {
         split = msplit;
         break;
       }
     }
     int arity = node.updateArity();
     for (int i = 0; i < arity; i++) {
       OptXValNode subnode = (OptXValNode) split.getChild(i);
       node.setChild(subnode.getTree(fold), i);
     }
   }
   return node;
 }
Exemple #6
0
 public void pruneRecursive(ClusNode node) {
   if (node.atBottomLevel()) {
     return;
   }
   for (int i = 0; i < node.getNbChildren(); i++) {
     ClusNode child = (ClusNode) node.getChild(i);
     pruneRecursive(child);
   }
   RegressionStat stat = (RegressionStat) node.getClusteringStat();
   double rmsLeaf = stat.getRMSE(m_ClusteringWeights);
   double adjustedErrorLeaf = rmsLeaf * pruningFactor(stat.getTotalWeight(), 1);
   double rmsSubTree =
       Math.sqrt(node.estimateClusteringSS(m_ClusteringWeights) / stat.getTotalWeight());
   double adjustedErrorTree =
       rmsSubTree * pruningFactor(stat.getTotalWeight(), node.getModelSize());
   // System.out.println("C leaf: "+rmsLeaf+" tree: "+rmsSubTree);
   // System.out.println("C leafadj: "+adjustedErrorLeaf +" treeadj: "+rmsSubTree);
   if ((adjustedErrorLeaf <= adjustedErrorTree)
       || (adjustedErrorLeaf < (m_GlobalDeviation * 0.00001))) {
     node.makeLeaf();
   }
 }
 public void modelUpdate(DataTuple tuple, ClusModel model) {
   ClusNode node = (ClusNode) model;
   node.getClusteringStat().updateWeighted(tuple, 0);
 }