public void random3Partition(DataSet p1, DataSet p2, DataSet p3, double f1, double f2) { int size1 = (int) (f1 * x.rows()); int size2 = (int) (f2 * x.rows()); int size3 = x.rows() - size1 - size2; Random random = new Random(new Date().getTime()); p1.x = newFromTemplate(p1.x, size1, x.columns()); p1.y = new double[size1]; p2.x = newFromTemplate(p2.x, size2, x.columns()); p2.y = new double[size2]; p3.x = newFromTemplate(p3.x, size3, x.columns()); p3.y = new double[size3]; // FIXME: Verify the uniformity of the partitioning scheme. int r1 = 0; int r2 = 0; int r3 = 0; for (int r = 0; r < x.rows(); r++) { double p = random.nextDouble(); if (p < f1 && r1 < size1) { p1.copyInstanceTo(r1, this, r); r1++; } else if (p < f1 + f2 && r2 < size2) { p2.copyInstanceTo(r2, this, r); r2++; } else if (r3 < size3) { p3.copyInstanceTo(r3, this, r); r3++; } else { r--; } } }
/** * Splits recursively the points of the graph while the value of the best cut found is less of a * specified limit (the alpha star factor). * * @param W the weight matrix of the graph * @param alpha_star the alpha star factor * @return an array of sets of points (partitions) */ protected int[][] partition(DoubleMatrix2D W, double alpha_star) { numPartitions++; // System.out.println("!"); // If the graph contains only one point if (W.columns() == 1) { int[][] p = new int[1][1]; p[0][0] = 0; return p; // Otherwise } else { // Computes the best cut int[][] cut = bestCut(W); // Computes the value of the found cut double cutVal = Ncut(W, cut[0], cut[1], null); // System.out.println("cutVal = "+cutVal +"\tnumPartitions = "+numPartitions); // If the value is less than alpha star if (cutVal < alpha_star && numPartitions < 2) { // Recursively partitions the first one found ... DoubleMatrix2D W0 = W.viewSelection(cut[0], cut[0]); int[][] p0 = partition(W0, alpha_star); // ... and the second one DoubleMatrix2D W1 = W.viewSelection(cut[1], cut[1]); int[][] p1 = partition(W1, alpha_star); // Merges the partitions found in the previous recursive steps int[][] p = new int[p0.length + p1.length][]; for (int i = 0; i < p0.length; i++) { p[i] = new int[p0[i].length]; for (int j = 0; j < p0[i].length; j++) p[i][j] = cut[0][p0[i][j]]; } for (int i = 0; i < p1.length; i++) { p[i + p0.length] = new int[p1[i].length]; for (int j = 0; j < p1[i].length; j++) p[i + p0.length][j] = cut[1][p1[i][j]]; } return p; } else { // Otherwise returns the partitions found in current step // w/o recursive invocation int[][] p = new int[1][W.columns()]; for (int i = 0; i < p[0].length; i++) p[0][i] = i; return p; } } }
/** * Save factorisation machine in a compressed, human readable file. * * @param out output * @throws IOException when I/O error */ public void save(OutputStream out) throws IOException { int N = m.rows(); int K = m.columns(); try (ZipOutputStream zip = new ZipOutputStream(out)) { zip.putNextEntry(new ZipEntry("info")); PrintStream ps = new PrintStream(zip); ps.println(N); ps.println(K); ps.flush(); zip.closeEntry(); zip.putNextEntry(new ZipEntry("b")); ps = new PrintStream(zip); ps.println(b); ps.flush(); zip.closeEntry(); zip.putNextEntry(new ZipEntry("w")); saveDenseDoubleMatrix1D(zip, w); zip.closeEntry(); zip.putNextEntry(new ZipEntry("m")); saveDenseDoubleMatrix2D(zip, m); zip.closeEntry(); } }
@Override public DoubleMatrix getEigenvectors() { DoubleMatrix2D V = myDecomposition.getV(); int nrows = V.rows(); int ncols = V.columns(); DoubleMatrix dm = DoubleMatrixFactory.DEFAULT.make(nrows, ncols); for (int r = 0; r < nrows; r++) { for (int c = 0; c < ncols; c++) { dm.set(r, c, V.getQuick(r, c)); } } return dm; }
static boolean computeLogMi( FeatureGenerator featureGen, double lambda[], DoubleMatrix2D Mi_YY, DoubleMatrix1D Ri_Y, boolean takeExp, boolean reuseM, boolean initMDone) { if (reuseM && initMDone) { Mi_YY = null; } else initMDone = false; if (Mi_YY != null) Mi_YY.assign(0); Ri_Y.assign(0); while (featureGen.hasNext()) { Feature feature = featureGen.next(); int f = feature.index(); int yp = feature.y(); int yprev = feature.yprev(); float val = feature.value(); // System.out.println(feature.toString()); if (yprev < 0) { // this is a single state feature. double oldVal = Ri_Y.getQuick(yp); Ri_Y.setQuick(yp, oldVal + lambda[f] * val); } else if (Mi_YY != null) { Mi_YY.setQuick(yprev, yp, Mi_YY.getQuick(yprev, yp) + lambda[f] * val); initMDone = true; } } if (takeExp) { for (int r = Ri_Y.size() - 1; r >= 0; r--) { Ri_Y.setQuick(r, expE(Ri_Y.getQuick(r))); if (Mi_YY != null) for (int c = Mi_YY.columns() - 1; c >= 0; c--) { Mi_YY.setQuick(r, c, expE(Mi_YY.getQuick(r, c))); } } } return initMDone; }
/** * Predict the value of an instance. * * @param x instance * @return value of prediction */ public double prediction(I x) { double pred = b; DoubleMatrix1D xm = new DenseDoubleMatrix1D(m.columns()); pred += x.operate( (i, xi) -> { double wi = w.getQuick(i); DoubleMatrix1D mi = m.viewRow(i); xm.assign(mi, (r, s) -> r + xi * s); return xi * wi - 0.5 * xi * xi * mi.zDotProduct(mi); }, (v1, v2) -> v1 + v2); pred += 0.5 * xm.zDotProduct(xm); return pred; }
/** * Constructs a new time series data contains for the given row-major data array and the given * list of variables. Each row of the data, data[i], contains a measured for each variable (in * order) for a particular time. The series of times is in increasing order. */ public TimeSeriesData(DoubleMatrix2D matrix, List<String> varNames) { if (matrix == null) { throw new NullPointerException("Data must not be null."); } if (varNames == null) { throw new NullPointerException("Variables must not be null."); } for (int i = 0; i < varNames.size(); i++) { if (varNames.get(i) == null) { throw new NullPointerException("Variable at index " + i + "is null."); } } this.data2 = matrix; if (varNames.size() != matrix.columns()) { throw new IllegalArgumentException( "Number of columns in the data " + "must match the number of variables."); } this.varNames = varNames; this.name = "Time Series Data"; }
/** * Constructs and returns a new eigenvalue decomposition object; The decomposed matrices can be * retrieved via instance methods of the returned decomposition object. Checks for symmetry, then * constructs the eigenvalue decomposition. * * @param A A square matrix. * @return A decomposition object to access <tt>D</tt> and <tt>V</tt>. * @throws IllegalArgumentException if <tt>A</tt> is not square. */ public EigenvalueDecomposition(DoubleMatrix2D A) { Property.DEFAULT.checkSquare(A); n = A.columns(); V = new double[n][n]; d = new double[n]; e = new double[n]; issymmetric = Property.DEFAULT.isSymmetric(A); if (issymmetric) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = A.getQuick(i, j); } } // Tridiagonalize. tred2(); // Diagonalize. tql2(); } else { H = new double[n][n]; ort = new double[n]; for (int j = 0; j < n; j++) { for (int i = 0; i < n; i++) { H[i][j] = A.getQuick(i, j); } } // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); } }
/** * Returns the best cut of a graph w.r.t. the degree of dissimilarity between points of different * partitions and the degree of similarity between points of the same partition. * * @param W the weight matrix of the graph * @return an array of two elements, each of these contains the points of a partition */ protected static int[][] bestCut(DoubleMatrix2D W) { int n = W.columns(); // Builds the diagonal matrices D and D^(-1/2) (represented as their diagonals) DoubleMatrix1D d = DoubleFactory1D.dense.make(n); DoubleMatrix1D d_minus_1_2 = DoubleFactory1D.dense.make(n); for (int i = 0; i < n; i++) { double d_i = W.viewRow(i).zSum(); d.set(i, d_i); d_minus_1_2.set(i, 1 / Math.sqrt(d_i)); } DoubleMatrix2D D = DoubleFactory2D.sparse.diagonal(d); // System.out.println("DoubleMatrix2D :\n"+D.toString()); DoubleMatrix2D X = D.copy(); // System.out.println("DoubleMatrix2D copy :\n"+X.toString()); // X = D^(-1/2) * (D - W) * D^(-1/2) X.assign(W, Functions.minus); // System.out.println("DoubleMatrix2D X: (D-W) :\n"+X.toString()); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) X.set(i, j, X.get(i, j) * d_minus_1_2.get(i) * d_minus_1_2.get(j)); // Computes the eigenvalues and the eigenvectors of X EigenvalueDecomposition e = new EigenvalueDecomposition(X); DoubleMatrix1D lambda = e.getRealEigenvalues(); // Selects the eigenvector z_2 associated with the second smallest eigenvalue // Creates a map that contains the pairs <index, eigenvalue> AbstractIntDoubleMap map = new OpenIntDoubleHashMap(n); for (int i = 0; i < n; i++) map.put(i, Math.abs(lambda.get(i))); IntArrayList list = new IntArrayList(); // Sorts the map on the value map.keysSortedByValue(list); // Gets the index of the second smallest element int i_2 = list.get(1); // y_2 = D^(-1/2) * z_2 DoubleMatrix1D y_2 = e.getV().viewColumn(i_2).copy(); y_2.assign(d_minus_1_2, Functions.mult); // Creates a map that contains the pairs <i, y_2[i]> map.clear(); for (int i = 0; i < n; i++) map.put(i, y_2.get(i)); // Sorts the map on the value map.keysSortedByValue(list); // Search the element in the map previuosly ordered that minimizes the cut // of the partition double best_cut = Double.POSITIVE_INFINITY; int[][] partition = new int[2][]; // The array v contains all the elements of the graph ordered by their // projection on vector y_2 int[] v = list.elements(); // For each admissible splitting point i for (int i = 1; i < n; i++) { // The array a contains all the elements that have a projection on vector // y_2 less or equal to the one of i-th element // The array b contains the remaining elements int[] a = new int[i]; int[] b = new int[n - i]; System.arraycopy(v, 0, a, 0, i); System.arraycopy(v, i, b, 0, n - i); double cut = Ncut(W, a, b, v); if (cut < best_cut) { best_cut = cut; partition[0] = a; partition[1] = b; } } // System.out.println("Partition:"); // UtilsJS.printMatrix(partition); return partition; }
/** * Gibt die Lösung x des Gleichungssystems zurück: nur eindeutige (d.h. parameterunabhängige xi) * werden zurückgegeben. index 0: Wert = 0 bedeutet xi unbestimmt, Wert = 1 bedeutet xi bestimmt * index 1: eigentlicher Wert (nur wenn xi bestimmt, dh index 0 = 1, sonst Wert 0) */ public final double[][] solve() throws ArithmeticException { // -------------------------------------------------------------------------- // EIGENTLICHER SOLVER für bestimmte Lösungsvariablen in unbestimmen Systemen // -------------------------------------------------------------------------- int gebrauchteUnbestParam = 0; x = new double[A.columns()] [2 + anzUnbestParam]; // Status 1 (bestimmt), kN, alpha, beta (Parameter) int z = A.rows() - 1; // Zeilenvariable, beginnt zuunterst // Gleichungen mit lauter Nullen while (R.viewRow(z).cardinality() == 0 // nachfolgende Tests massgebend, dieser jedoch schnell || (Fkt.max(R.viewRow(z).toArray()) < TOL && Fkt.min(R.viewRow(z).toArray()) > -TOL)) { double cwert; if (z < c.rows()) cwert = c.get(z, 0); else cwert = 0; if (Math.abs(cwert) > TOL) { System.out.println("widersprüchliche Gleichungen im System! Zeile " + z); throw new ArithmeticException("Widerspruch im Gleichungssystem!"); } z--; if (z <= 0) { System.out.println("lauter Nullen im GLS"); break; } } // Verarbeiten der Gleichungen (von unten her) for (z = z; z >= 0; z--) { // finde erste nicht-Null in Zeile (Pivot) int p = -1; // Pivot: erste Zahl welche nicht null ist pivotfinden: for (int i = 0; i < R.columns(); i++) { if (Math.abs(R.get(z, i)) > TOL) { // Versuch, numerische Probleme (Überbestimmtheit) zu vermeiden p = i; break pivotfinden; } } // Fall Kein Pivot gefunden (d.h. linker Teil der Gleichung aus lauter Nullen) if (p < 0) { if (debug) System.out.println("Warnung: kein Pivot gefunden in Zeile " + z); // Kontrolle, ob rechte Seite (c) auch null --> ok, sonst Widerspruch im GLS if (Math.abs(c.get(z, 0)) > TOL) { System.out.println("widersprüchliche Gleichungen im System! Zeile " + z); throw new ArithmeticException("Widerspruch im Gleichungssystem!"); } else { if (debug) System.out.println("Entwarnung: Zeile " + z + " besteht aus lauter Nullen (ok)"); continue; } } // kontrollieren, ob es in der Gleichung (Zeile) eine neue Unbestimmte Variable (i.d.R. Pivot) // hat. boolean alleVarBestimmt = true; int effPivot = p; // effektiver Pivot (1. Unbestimmte Variable der Zeile), i.d.R. Pivot for (int i = p; i < R.columns(); i++) { if (x[i][0] == 0 && Math.abs(R.viewRow(z).get(i)) > TOL) { alleVarBestimmt = false; effPivot = i; // i.d.R. effPivot=p, aber nicht immer. break; } } if (alleVarBestimmt) { // alle Variablen (inkl.Pivot) schon bestimmt! // CHECKEN, ob (Zeile "+z+") nicht widersprüchlich double[] kontrolle = new double[1 + anzUnbestParam]; for (int j = 0; j < kontrolle.length; j++) kontrolle[j] = 0; for (int i = p; i < R.columns(); i++) { for (int j = 0; j < kontrolle.length; j++) { kontrolle[j] += R.viewRow(z).get(i) * x[i][j + 1]; } } kontrolle[0] -= c.get(z, 0); // TODO TESTEN! boolean alleParamNull = true; int bekParam = -1; // Parameter der aus der Gleichung bestimmt werden kann. for (int j = kontrolle.length - 1; j > 0; j--) { if (Math.abs(kontrolle[j]) > TOL) { alleParamNull = false; if (bekParam < 0) bekParam = j; } } // Überprüfen, ob Gleichung widersprüchlich ist if (alleParamNull) { // TODO ev. nochmals prüfen ob alle 0 mit geringerer Toleranz (Problem // fastNull*Param ≠ 0 könnte bedeuten dass Param = 0). Zumindestens // wenn noch Parameter zu vergeben. double obnull = Math.abs(kontrolle[0]); if (obnull > TOL) { System.out.println(""); System.out.println( "Widerspruch im Gleichungssystem! (Zeile " + z + ") " + obnull + " ungleich 0"); // TODO: URSPRÜNGLICH ZEILE (piv) ANGEBEN! System.out.println("eventuell numerisches Problem"); throw new ArithmeticException("Widerspruch im Gleichungssystem!"); } else continue; // nächste Gleichung } // else // Ein schon vergebener Parameter kann ausgerechnet werden // Schlaufe über bisherige Lösung assert bekParam > 0; for (int xi = 0; xi < x.length; xi++) { double faktor = x[xi][1 + bekParam]; if (Math.abs(faktor) < TOL) continue; // Einsetzen assert x[xi][0] > 0; // bestimmt for (int j = 0; j < kontrolle.length; j++) { if (j != bekParam) { x[xi][j + 1] += -kontrolle[j] * faktor / kontrolle[bekParam]; } } } for (int xi = 0; xi < x.length; xi++) { // Parameter nachrutschen if (bekParam < anzUnbestParam) { // d.h. nicht der letzte zu vergebende Parameter. for (int j = bekParam; j < anzUnbestParam; j++) { x[xi][j + 1] = x[xi][j + 2]; x[xi][j + 2] = 0; } } else x[xi][bekParam + 1] = 0; } if (debug) System.err.println( "VORSICHT, wenig GETESTETES Modul des Solvers im Einsatz."); // TODO Warnung // entfernen, da // vermutlich i.O. gebrauchteUnbestParam--; } // Normalfall, unbestimmter (effektiver) Pivot vorhanden else { // unbekannte x[effPivot][1] = c.get(z, 0) / R.viewRow(z).get(effPivot); for (int i = R.columns() - 1; i >= p; i--) { // R.Spalten, da dies AnzUnbek x entspricht if (i == effPivot) continue; if (x[i][0] == 0) { // unbestimmt, aber nicht Pivot if (Math.abs(R.viewRow(z).get(i)) > TOL) { // TODO testen!!! if (gebrauchteUnbestParam >= anzUnbestParam) { System.err.println( "Programmfehler in solver: gebrauchteUnbestParam >= anzUnbestParam"); throw new AssertionError( "Programmfehler in solver: gebrauchteUnbestParam >= anzUnbestParam"); } x[i][gebrauchteUnbestParam + 2] = 1; // neuer Parameter (alpha, beta) setzen x[i][0] = 1; // bestimmt (auch wenn von Parameter abhängig). gebrauchteUnbestParam++; } } x[effPivot][1] += -R.viewRow(z).get(i) * x[i][1] / R.viewRow(z).get(effPivot); for (int j = 0; j < gebrauchteUnbestParam; j++) { x[effPivot][2 + j] += -R.viewRow(z).get(i) * x[i][2 + j] / R.viewRow(z).get(effPivot); } } x[effPivot][0] = 1; } } if (debug) { System.out.println(""); for (int i = 0; i < x.length; i++) { System.out.print("x" + i + " = " + Fkt.nf(x[i][1], 3)); for (int j = 2; j < x[i].length; j++) { System.out.print(", P" + (j - 1) + " = " + Fkt.nf(x[i][j], 3)); } System.out.println(""); } } // ------------------ // Lösung zurückgeben // ------------------ // Lösung x: nur eindeutige (d.h. parameterunabhängige xi) werden zurückgegeben // index 0: Wert = 0 bedeutet xi unbestimmt, Wert = 1 bedeutet xi bestimmt // index 1: eigentlicher Wert (nur wenn xi bestimmt, dh index 0 = 1, sonst Wert 0) xLsg = new double[R.columns()][2]; for (int i = 0; i < x.length; i++) { boolean bestimmt; if (x[i][0] > 0) { bestimmt = true; // schauen, ob Lösungsvariable xi bestimmt, dh unabhängig von überzähligen Parametern for (int j = 2; j < x[i].length; j++) { if (Math.abs(x[i][j]) > TOL) bestimmt = false; } } else bestimmt = false; if (bestimmt) { xLsg[i][0] = 1; xLsg[i][1] = x[i][1]; } else xLsg[i][0] = 0; } solved = true; return xLsg; }