/** * Return the lower bounds for the problem. If the original lower bounds are null, the they are * set to the value of <i>minLBValue</i>. Otherwise, any lower bound is limited to the value of * <i>minLBValue</i> */ @Override protected DoubleMatrix1D getLb() { if (this.limitedLb == null) { if (super.getLb() == null) { this.limitedLb = F1.make(getC().size(), minLBValue); } else { this.limitedLb = F1.make(super.getLb().size()); for (int i = 0; i < super.getLb().size(); i++) { double lbi = super.getLb().getQuick(i); if (lbi < minLBValue) { log.warn( "the " + i + "-th lower bound was limited form " + lbi + " to the value of minLBValue: " + minLBValue); limitedLb.setQuick(i, minLBValue); } else { limitedLb.setQuick(i, lbi); } } } } return limitedLb; }
/** * Return the upper bounds for the problem. If the original upper bounds are null, the they are * set to the value of <i>maxUBValue</i>. Otherwise, any upper bound is limited to the value of * <i>maxUBValue</i> */ @Override protected DoubleMatrix1D getUb() { if (this.limitedUb == null) { if (super.getUb() == null) { this.limitedUb = F1.make(getC().size(), maxUBValue); } else { this.limitedUb = F1.make(super.getUb().size()); for (int i = 0; i < super.getUb().size(); i++) { double ubi = super.getUb().getQuick(i); if (maxUBValue < ubi) { log.warn( "the " + i + "-th upper bound was limited form " + ubi + " to the value of maxUBValue: " + maxUBValue); limitedUb.setQuick(i, maxUBValue); } else { limitedUb.setQuick(i, ubi); } } } } return limitedUb; }
private static double[] solution(DoubleMatrix2D X, DoubleMatrix2D Y, int k) { // Solve X * Beta = Y for Beta // Only the first column of Y is used // k is number of beta coefficients QRDecomposition qr = new QRDecomposition(X); if (qr.hasFullRank()) { DoubleMatrix2D B = qr.solve(Y); return B.viewColumn(0).toArray(); } else { DoubleMatrix1D Y0 = Y.viewColumn(0); // first column of Y SingularValueDecomposition svd = new SingularValueDecomposition(X); DoubleMatrix2D S = svd.getS(); DoubleMatrix2D V = svd.getV(); DoubleMatrix2D U = svd.getU(); Algebra alg = new Algebra(); DoubleMatrix2D Ut = alg.transpose(U); DoubleMatrix1D g = alg.mult(Ut, Y0); // Ut*Y0 for (int j = 0; j < k; j++) { // solve S*p = g for p; S is a diagonal matrix double x = S.getQuick(j, j); if (x > 0.) { x = g.getQuick(j) / x; // p[j] = g[j]/S[j] g.setQuick(j, x); // overwrite g by p } else g.setQuick(j, 0.); } DoubleMatrix1D beta = alg.mult(V, g); // V*p return beta.toArray(); } }
/** Computes the term Grad[fi].stepX */ protected DoubleMatrix1D gradFiStepX(DoubleMatrix1D stepX) { DoubleMatrix1D ret = F1.make(getMieq()); for (int i = 0; i < getDim(); i++) { ret.setQuick(i, -stepX.getQuick(i)); ret.setQuick(getDim() + i, stepX.getQuick(i)); } return ret; }
/** @see "Convex Optimization, p. 610" */ private DoubleMatrix1D rCent(DoubleMatrix1D fiX, DoubleMatrix1D L, double t) { DoubleMatrix1D ret = F1.make(L.size()); for (int i = 0; i < ret.size(); i++) { ret.setQuick(i, -L.getQuick(i) * fiX.getQuick(i) - 1. / t); } return ret; }
/** * Calculates the second term of the first row of (11.55) "Convex Optimization". * * @see "Convex Optimization, 11.55" */ protected DoubleMatrix1D gradSum(double t, DoubleMatrix1D fiX) { DoubleMatrix1D gradSum = F1.make(getDim()); for (int i = 0; i < dim; i++) { double d = 0; d += 1. / (t * fiX.getQuick(i)); d += -1. / (t * fiX.getQuick(getDim() + i)); gradSum.setQuick(i, d); } return gradSum; }
static boolean computeLogMi( FeatureGenerator featureGen, double lambda[], DoubleMatrix2D Mi_YY, DoubleMatrix1D Ri_Y, boolean takeExp, boolean reuseM, boolean initMDone) { if (reuseM && initMDone) { Mi_YY = null; } else initMDone = false; if (Mi_YY != null) Mi_YY.assign(0); Ri_Y.assign(0); while (featureGen.hasNext()) { Feature feature = featureGen.next(); int f = feature.index(); int yp = feature.y(); int yprev = feature.yprev(); float val = feature.value(); // System.out.println(feature.toString()); if (yprev < 0) { // this is a single state feature. double oldVal = Ri_Y.getQuick(yp); Ri_Y.setQuick(yp, oldVal + lambda[f] * val); } else if (Mi_YY != null) { Mi_YY.setQuick(yprev, yp, Mi_YY.getQuick(yprev, yp) + lambda[f] * val); initMDone = true; } } if (takeExp) { for (int r = Ri_Y.size() - 1; r >= 0; r--) { Ri_Y.setQuick(r, expE(Ri_Y.getQuick(r))); if (Mi_YY != null) for (int c = Mi_YY.columns() - 1; c >= 0; c--) { Mi_YY.setQuick(r, c, expE(Mi_YY.getQuick(r, c))); } } } return initMDone; }
/** @see "Convex Optimization, p. 610" */ protected DoubleMatrix1D rDual(DoubleMatrix1D gradF0X, DoubleMatrix1D L, DoubleMatrix1D V) { // m1 = GradFiX[T].L + gradF0X DoubleMatrix1D m1 = F1.make(getDim()); for (int i = 0; i < getDim(); i++) { double m = 0; m += -L.getQuick(i); m += L.getQuick(getDim() + i); m1.setQuick(i, m + gradF0X.get(i)); } if (getMeq() == 0) { return m1; } return ColtUtils.zMultTranspose(getA(), V, m1, 1.); }
public void newmanCluster(ItemRegistry registry) { DoubleMatrix2D distance_matrix = DoubleFactory2D.sparse.make( registry.getGraph().getNodeCount(), registry.getGraph().getNodeCount()); DoubleMatrix1D a_matrix = DoubleFactory1D.dense.make(registry.getGraph().getNodeCount(), 0.); Map<String, Cluster> cluster_map = new HashMap<String, Cluster>(); // construct the leaf node distance matrix Iterator edge_iter = registry.getGraph().getEdges(); m_total_distances = 0.; while (edge_iter.hasNext()) { Edge edge = (Edge) edge_iter.next(); Cluster clust1 = (Cluster) edge.getFirstNode(); Cluster clust2 = (Cluster) edge.getSecondNode(); if (cluster_map.get(clust1.getAttribute("id")) == null) { cluster_map.put(clust1.getAttribute("id"), clust1); } if (cluster_map.get(clust2.getAttribute("id")) == null) { cluster_map.put(clust2.getAttribute("id"), clust2); } int n = Integer.parseInt(clust1.getAttribute("id")); int m = Integer.parseInt(clust2.getAttribute("id")); // make reciprocal (big values = good in newman, but not in our case) double dist = 1 / clust1.getCenter().distance(clust2.getCenter()); distance_matrix.set(Math.max(n, m), Math.min(n, m), dist); // m_total_distances += dist; // a_matrix.setQuick( n, a_matrix.getQuick( n ) + dist ); // a_matrix.setQuick( m, a_matrix.getQuick( m ) + dist ); m_total_distances += 1; a_matrix.setQuick(n, a_matrix.getQuick(n) + 1); a_matrix.setQuick(m, a_matrix.getQuick(m) + 1); } // System.out.println(distance_matrix); // System.out.println(count_matrix); // agglomerate nodes until we reach a root node (or nodes) boolean done = false; int trash = 0; QFinder qfinder = new QFinder(); qfinder.a_matrix = a_matrix; QMerger qmerger = new QMerger(); while (!done) { // find the minimum cluster distance qfinder.reset(); distance_matrix.forEachNonZero(qfinder); // done = true; // System.out.println(distance_matrix); // System.out.println(count_matrix); if (qfinder.getVal() == -Double.MAX_VALUE) { break; } // add a parent cluster to the graph Cluster clust1 = cluster_map.get("" + qfinder.getM()); Cluster clust2 = cluster_map.get("" + qfinder.getN()); while (clust1.getParent() != null) { clust1 = clust1.getParent(); } while (clust2.getParent() != null) { clust2 = clust2.getParent(); } trash++; double dist = Math.max(clust1.getHeight(), clust2.getHeight()); Cluster new_cluster = new DefaultCluster( (float) (clust1.getCenter().getX() + clust2.getCenter().getX()) / 2.f, (float) (clust1.getCenter().getY() + clust2.getCenter().getY()) / 2.f, (float) Math.sqrt( clust1.getRadius() * clust1.getRadius() + clust2.getRadius() * clust2.getRadius()), clust1, clust2, dist); registry.getGraph().addNode(new_cluster); // merge the clusters distances / counts int M = Math.max(qfinder.getM(), qfinder.getN()); int N = Math.min(qfinder.getM(), qfinder.getN()); a_matrix.set(N, a_matrix.getQuick(M) + a_matrix.getQuick(N)); a_matrix.set(M, 0); // System.out.println("M = "+M+" N = "+N + " VAL=" + minfinder.getVal() ); qmerger.setM(M); qmerger.setN(N); qmerger.setParent(distance_matrix); qmerger.setMode(true); // System.out.println(distance_matrix.viewPart( 0, M, distance_matrix.rows(), 1)); distance_matrix.viewPart(0, M, distance_matrix.rows(), 1).forEachNonZero(qmerger); qmerger.setMode(false); // System.out.println(distance_matrix.viewPart( M, 0, 1, M )); distance_matrix.viewPart(M, 0, 1, M).forEachNonZero(qmerger); // System.out.println(distance_matrix); // System.out.println(count_matrix); // free any superfluous memory randomly ~ (1/20) times if (Math.random() > 0.95) { distance_matrix.trimToSize(); } } }
/** * Solves a presolved standard form LP problem in the form of min(c) s.t. A.x = b lb <= x <= ub */ protected int optimizePresolvedStandardLP() throws Exception { log.info("optimizePresolvedStandardLP"); long tStart = System.currentTimeMillis(); LPOptimizationRequest lpRequest = getLPOptimizationRequest(); if (log.isDebugEnabled() && lpRequest.isDumpProblem()) { log.debug("LP problem: " + lpRequest.toString()); } if (this.dim <= -1) { if (getLb().size() != getUb().size()) { log.error("Lower and upper bounds must have the same dimension"); throw new IllegalArgumentException("Lower and upper bounds must have the same dimension"); } this.dim = getLb().size(); double minDeltaBoundsValue = Double.MAX_VALUE; int minDeltaBoundsIndex = -1; for (int i = 0; i < getDim(); i++) { double deltai = getUb().getQuick(i) - getLb().getQuick(i); if (deltai < minDeltaBoundsValue) { minDeltaBoundsValue = deltai; minDeltaBoundsIndex = i; } } log.info("min delta bounds index: " + minDeltaBoundsIndex); log.info("min delta bounds value: " + minDeltaBoundsValue); } // this.boundedLb = new boolean[getDim()]; // this.boundedUb = new boolean[getDim()]; // for(int i=0; i<getDim(); i++){ // if(!isLbUnbounded(getLb().getQuick(i))){ // boundedLb[i] = true; // nOfBoundedLb++; // } // if(!isUbUnbounded(getUb().getQuick(i))){ // boundedUb[i] = true; // nOfBoundedUb++; // } // } this.meq = (this.meq > -1) ? this.meq : ((getA() != null) ? getA().rows() : 0); // this.mieq = (this.mieq>-1)? this.mieq : (nOfBoundedLb+nOfBoundedUb); this.mieq = (this.mieq > -1) ? this.mieq : (2 * getDim()); if (log.isDebugEnabled()) { log.debug("dim : " + getDim()); log.debug("meq : " + getMeq()); log.debug("mieq: " + getMieq()); } LPOptimizationResponse lpResponse = new LPOptimizationResponse(); DoubleMatrix1D X0 = getInitialPoint(); if (X0 == null) { DoubleMatrix1D X0NF = getNotFeasibleInitialPoint(); if (X0NF != null) { double rPriX0NFNorm = Math.sqrt(ALG.norm2(rPri(X0NF))); DoubleMatrix1D fiX0NF = getFi(X0NF); int maxIndex = Utils.getMaxIndex(fiX0NF); double maxValue = fiX0NF.get(maxIndex); if (log.isDebugEnabled()) { log.debug("rPriX0NFNorm : " + rPriX0NFNorm); log.debug("X0NF : " + ArrayUtils.toString(X0NF.toArray())); log.debug("fiX0NF : " + ArrayUtils.toString(fiX0NF.toArray())); } if (maxValue < 0 && rPriX0NFNorm <= getToleranceFeas()) { // the provided not-feasible starting point is already feasible log.debug("the provided initial point is already feasible"); X0 = X0NF; } } if (X0 == null) { BasicPhaseILPPDM bf1 = new BasicPhaseILPPDM(this); X0 = bf1.findFeasibleInitialPoint(); } } // check X0 feasibility DoubleMatrix1D fiX0 = getFi(X0); int maxIndex = Utils.getMaxIndex(fiX0); double maxValue = fiX0.get(maxIndex); double rPriX0Norm = Math.sqrt(ALG.norm2(rPri(X0))); if (maxValue >= 0. || rPriX0Norm > getToleranceFeas()) { // must be fi STRICTLY < 0 log.warn("rPriX0Norm : " + rPriX0Norm); log.warn("ineqX0 : " + ArrayUtils.toString(fiX0.toArray())); log.warn("max ineq index: " + maxIndex); log.warn("max ineq value: " + maxValue); // the point must be INTERNAL, fi are used as denominators throw new Exception("initial point must be strictly feasible"); } DoubleMatrix1D V0 = F1.make(getMeq()); if (getYlb() != null && getYub() != null) { // NB: the Lagrangian multipliers for eq. constraints used in this interior point method (v) // are the opposite of the Lagrangian multipliers for eq. constraints used in the presolver // (y) // and so Ylb<=y<=Yub becomes -Yub<=v<=-Ylb for (int i = 0; i < getMeq(); i++) { double v0i = 0; if (!isLbUnbounded(getYlb().getQuick(i))) { if (!isUbUnbounded(getYub().getQuick(i))) { v0i = -(getYub().getQuick(i) + getYlb().getQuick(i)) / 2; } else { v0i = -getYlb().getQuick(i); } } else { if (!isUbUnbounded(getYub().getQuick(i))) { v0i = -getYub().getQuick(i); } else { v0i = 0; } } V0.setQuick(i, v0i); } } DoubleMatrix1D L0 = getInitialLagrangian(); if (L0 != null) { for (int j = 0; j < L0.size(); j++) { // must be >0 if (L0.get(j) <= 0) { throw new IllegalArgumentException("initial lagrangian must be strictly > 0"); } } } else { L0 = F1.make(getMieq(), 1.); // must be >0 strictly if (getZlb() != null && getZub() != null) { // Zlb<= L <=Zub, meaning that: // zlb[i] and zub[i] are the bounds on the Lagrangian of the constraint associated with // lb[i]<x[i]<ub[i] // note that zlb.size = zub.size = lb.size = ub.size (and = n of variables of the problem (= // getDim()) // and that L.size = nOfBoundedLb + nOfBoundedUb (and in general < 2*getDim()) int cntLB = 0; int cntUB = 0; for (int i = 0; i < getDim(); i++) { double zlbi = (isLbUnbounded(getZlb().getQuick(i))) ? 0 : getZlb().getQuick(i); // L must be > 0 double zubi = (isUbUnbounded(getZub().getQuick(i))) ? 1 : getZub().getQuick(i); L0.setQuick(cntLB, (zubi - zlbi) / 2); cntLB++; L0.setQuick(getDim() + cntUB, (zubi - zlbi) / 2); cntUB++; } } else { // inequalities comes from the pairs lower bounds-upper bounds // in the calculation of the H matrix fro the KKT system, each pairs gives terms of the // form: // t = tl + tu // tl = -L[i] / fi[i] for the lower bound // tu = L[dim+i] / fi[dim+i] for the upper bound // we want t = 1, and hence // L[i] > -cc * fi[i] // L[dim+i] = (1 + L[i] / fi[i]) * fi[dim+i] // double cc = 10; // int nOfLB = getMieq()/2; // for (int i = 0; i < nOfLB; i++) { // L0.setQuick(i, -cc * fiX0.getQuick(i)); // L0.setQuick(nOfLB + i, (1 - 10) * fiX0.getQuick(nOfLB + i)); // double sum = -L0.getQuick(i)/fiX0.getQuick(i)+L0.getQuick(nOfLB + // i)/fiX0.getQuick(nOfLB + i); // log.debug("sum["+i+"]: " + sum); // } } } if (log.isDebugEnabled()) { log.debug("X0: " + ArrayUtils.toString(X0.toArray())); log.debug("V0: " + ArrayUtils.toString(V0.toArray())); log.debug("L0: " + ArrayUtils.toString(L0.toArray())); } if (log.isInfoEnabled()) { log.info("toleranceFeas: " + getToleranceFeas()); log.info("tolerance : " + getTolerance()); } DoubleMatrix1D X = X0; DoubleMatrix1D V = V0; DoubleMatrix1D L = L0; double previousF0X = Double.NaN; double previousRPriXNorm = Double.NaN; double previousRDualXLVNorm = Double.NaN; double previousSurrDG = Double.NaN; double t; int iteration = 0; // List<DoubleMatrix1D> XList = new ArrayList<DoubleMatrix1D>(); // List<double[]> SList = new ArrayList<double[]>(); while (true) { iteration++; // iteration limit condition if (iteration == getMaxIteration() + 1) { lpResponse.setReturnCode(OptimizationResponse.FAILED); log.error("Max iterations limit reached"); throw new Exception("Max iterations limit reached"); } // XList.add(XList.size(), X); double F0X = getF0(X); if (log.isInfoEnabled()) { log.info("iteration: " + iteration); log.info("f0(X)=" + F0X); } if (log.isDebugEnabled()) { log.debug("X=" + ArrayUtils.toString(X.toArray())); log.debug("L=" + ArrayUtils.toString(L.toArray())); log.debug("V=" + ArrayUtils.toString(V.toArray())); } // determine functions evaluations DoubleMatrix1D gradF0X = getGradF0(X); DoubleMatrix1D fiX = getFi(X); log.debug("fiX=" + ArrayUtils.toString(fiX.toArray())); // DoubleMatrix2D GradFiX = getGradFi(X); // DoubleMatrix2D GradFiXOLD = getGradFiOLD(X); // determine t double surrDG = getSurrogateDualityGap(fiX, L); t = getMu() * getMieq() / surrDG; log.debug("t: " + t); // determine residuals DoubleMatrix1D rPriX = rPri(X); DoubleMatrix1D rCentXLt = rCent(fiX, L, t); DoubleMatrix1D rDualXLV = rDual(gradF0X, L, V); // DoubleMatrix1D rDualXLVOLD = rDualOLD(GradFiXOLD, gradF0X, L, V); // log.debug("delta: " + ALG.normInfinity(rDualXLVOLD.assign(rDualXLV, Functions.minus))); double rPriXNorm = Math.sqrt(ALG.norm2(rPriX)); double rCentXLtNorm = Math.sqrt(ALG.norm2(rCentXLt)); double rDualXLVNorm = Math.sqrt(ALG.norm2(rDualXLV)); double normRXLVt = Math.sqrt(Math.pow(rPriXNorm, 2) + Math.pow(rCentXLtNorm, 2) + Math.pow(rDualXLVNorm, 2)); // @TODO: set log.debug not log.info log.info("rPri norm: " + rPriXNorm); log.info("rCent norm: " + rCentXLtNorm); log.info("rDual norm: " + rDualXLVNorm); log.info("surrDG : " + surrDG); // custom exit condition if (checkCustomExitConditions(X)) { lpResponse.setReturnCode(OptimizationResponse.SUCCESS); break; } // exit condition if (rPriXNorm <= getToleranceFeas() && rDualXLVNorm <= getToleranceFeas() && surrDG <= getTolerance()) { lpResponse.setReturnCode(OptimizationResponse.SUCCESS); break; } // progress conditions if (isCheckProgressConditions()) { if (!Double.isNaN(previousRPriXNorm) && !Double.isNaN(previousRDualXLVNorm) && !Double.isNaN(previousSurrDG)) { if ((previousRPriXNorm <= rPriXNorm && rPriXNorm >= getToleranceFeas()) || (previousRDualXLVNorm <= rDualXLVNorm && rDualXLVNorm >= getToleranceFeas())) { log.error("No progress achieved, exit iterations loop without desired accuracy"); lpResponse.setReturnCode(OptimizationResponse.FAILED); throw new Exception( "No progress achieved, exit iterations loop without desired accuracy"); } } previousRPriXNorm = rPriXNorm; previousRDualXLVNorm = rDualXLVNorm; previousSurrDG = surrDG; } // compute primal-dual search direction // a) prepare 11.55 system DoubleMatrix2D Hpd = GradLSum(L, fiX); // DoubleMatrix2D HpdOLD = GradLSumOLD(GradFiXOLD, L, fiX); // log.debug("delta: " + ALG.normInfinity(HpdOLD.assign(Hpd, Functions.minus))); DoubleMatrix1D gradSum = gradSum(t, fiX); DoubleMatrix1D g = null; // if(getAT()==null){ if (getA() == null) { g = ColtUtils.add(gradF0X, gradSum); } else { // g = ColtUtils.add(ColtUtils.add(gradF0X, gradSum), ALG.mult(getAT(), V)); g = ColtUtils.add( ColtUtils.add(gradF0X, gradSum), ColtUtils.zMultTranspose(getA(), V, F1.make(getDim()), 0)); } // b) solving 11.55 system if (this.kktSolver == null) { this.kktSolver = new UpperDiagonalHKKTSolver(getDim(), lpRequest.isRescalingDisabled()); // this.kktSolver = new DiagonalHKKTSolver(getDim(), lpRequest.isRescalingDisabled()); } if (isCheckKKTSolutionAccuracy()) { kktSolver.setCheckKKTSolutionAccuracy(true); kktSolver.setToleranceKKT(getToleranceKKT()); } kktSolver.setHMatrix(Hpd); kktSolver.setGVector(g); if (getA() != null) { kktSolver.setAMatrix(getA()); // kktSolver.setATMatrix(getAT()); kktSolver.setHVector(rPriX); // if(rPriXNorm > getToleranceFeas()){ // kktSolver.setHVector(rPriX); // } } DoubleMatrix1D[] sol = kktSolver.solve(); DoubleMatrix1D stepX = sol[0]; // double[] signa = new double[stepX.size()]; // for(int p=0; p<stepX.size(); p++){ // signa[p] = Math.signum(stepX.getQuick(p)); // } // SList.add(SList.size(), signa); DoubleMatrix1D stepV = (sol[1] != null) ? sol[1] : F1.make(0); if (log.isDebugEnabled()) { log.debug("stepX: " + ArrayUtils.toString(stepX.toArray())); log.debug("stepV: " + ArrayUtils.toString(stepV.toArray())); } // c) solving for L DoubleMatrix1D stepL = F1.make(getMieq()); DoubleMatrix1D gradFiStepX = gradFiStepX(stepX); for (int i = 0; i < getMieq(); i++) { stepL.setQuick( i, (-L.getQuick(i) * gradFiStepX.getQuick(i) + rCentXLt.getQuick(i)) / fiX.getQuick(i)); } if (log.isDebugEnabled()) { log.debug("stepL: " + ArrayUtils.toString(stepL.toArray())); } // line search and update // a) sMax computation double sMax = Double.MAX_VALUE; for (int j = 0; j < getMieq(); j++) { if (stepL.get(j) < 0) { sMax = Math.min(-L.get(j) / stepL.get(j), sMax); } } sMax = Math.min(1, sMax); double s = 0.99 * sMax; // b) backtracking with f DoubleMatrix1D X1 = F1.make(X.size()); DoubleMatrix1D L1 = F1.make(L.size()); DoubleMatrix1D V1 = F1.make(V.size()); DoubleMatrix1D fiX1 = null; DoubleMatrix1D gradF0X1 = null; // DoubleMatrix2D GradFiX1 = null; // DoubleMatrix2D GradFiX1 = null; DoubleMatrix1D rPriX1 = null; DoubleMatrix1D rCentX1L1t = null; DoubleMatrix1D rDualX1L1V1 = null; int cnt = 0; boolean areAllNegative = true; while (cnt < 500) { cnt++; // X1 = X + s*stepX X1 = stepX.copy().assign(Mult.mult(s)).assign(X, Functions.plus); DoubleMatrix1D ineqValueX1 = getFi(X1); areAllNegative = true; for (int j = 0; areAllNegative && j < getMieq(); j++) { areAllNegative = (Double.compare(ineqValueX1.get(j), 0.) < 0); } if (areAllNegative) { break; } s = getBeta() * s; } if (!areAllNegative) { // exited from the feasible region throw new Exception("Optimization failed: impossible to remain within the faesible region"); } log.debug("s: " + s); // c) backtracking with norm double previousNormRX1L1V1t = Double.NaN; cnt = 0; while (cnt < 500) { cnt++; X1 = ColtUtils.add(X, stepX, s); L1 = ColtUtils.add(L, stepL, s); V1 = ColtUtils.add(V, stepV, s); if (isInDomainF0(X1)) { fiX1 = getFi(X1); gradF0X1 = getGradF0(X1); // GradFiX1 = getGradFi(X1); rPriX1 = rPri(X1); rCentX1L1t = rCent(fiX1, L1, t); rDualX1L1V1 = rDual(gradF0X1, L1, V1); double normRX1L1V1t = Math.sqrt(ALG.norm2(rPriX1) + ALG.norm2(rCentX1L1t) + ALG.norm2(rDualX1L1V1)); // log.debug("normRX1L1V1t: "+normRX1L1V1t); if (normRX1L1V1t <= (1 - getAlpha() * s) * normRXLVt) { break; } if (!Double.isNaN(previousNormRX1L1V1t)) { if (previousNormRX1L1V1t <= normRX1L1V1t) { log.warn("No progress achieved in backtracking with norm"); break; } } previousNormRX1L1V1t = normRX1L1V1t; } s = getBeta() * s; // log.debug("s: " + s); } // update X = X1; V = V1; L = L1; } // if(lpRequest.isCheckOptimalDualityConditions()){ // //check duality conditions: // if(!checkDualityConditions(X, L, V)){ // log.error("duality conditions not satisfied"); // lpResponse.setReturnCode(OptimizationResponse.FAILED); // throw new Exception("duality conditions not satisfied"); // } // } if (lpRequest.isCheckOptimalLagrangianBounds()) { // check equality constraints Lagrangian bounds // if(!checkEqConstraintsLagrangianBounds(V)){ // log.error("equality constraints Lagrangian multipliers bounds not satisfied"); // lpResponse.setReturnCode(OptimizationResponse.FAILED); // throw new Exception("equality constraints Lagrangian multipliers bounds not satisfied"); // } // check inequality constraints Lagrangian bounds // if(!checkIneqConstraintsLagrangianBounds(X, L)){ // log.error("inequality constraints Lagrangian multipliers bounds not satisfied"); // lpResponse.setReturnCode(OptimizationResponse.FAILED); // throw new Exception("inequality constraints Lagrangian multipliers bounds not // satisfied"); // } } long tStop = System.currentTimeMillis(); log.debug("time: " + (tStop - tStart)); log.debug("sol : " + ArrayUtils.toString(X.toArray())); log.debug("ret code: " + lpResponse.getReturnCode()); // log.debug("XList : " + ArrayUtils.toString(XList)); // for(int s=0; s<SList.size(); s++){ // log.debug("SList : " + ArrayUtils.toString(SList.get(s))); // } lpResponse.setSolution(X.toArray()); setLPOptimizationResponse(lpResponse); return lpResponse.getReturnCode(); }