private static double[] solution(DoubleMatrix2D X, DoubleMatrix2D Y, int k) { // Solve X * Beta = Y for Beta // Only the first column of Y is used // k is number of beta coefficients QRDecomposition qr = new QRDecomposition(X); if (qr.hasFullRank()) { DoubleMatrix2D B = qr.solve(Y); return B.viewColumn(0).toArray(); } else { DoubleMatrix1D Y0 = Y.viewColumn(0); // first column of Y SingularValueDecomposition svd = new SingularValueDecomposition(X); DoubleMatrix2D S = svd.getS(); DoubleMatrix2D V = svd.getV(); DoubleMatrix2D U = svd.getU(); Algebra alg = new Algebra(); DoubleMatrix2D Ut = alg.transpose(U); DoubleMatrix1D g = alg.mult(Ut, Y0); // Ut*Y0 for (int j = 0; j < k; j++) { // solve S*p = g for p; S is a diagonal matrix double x = S.getQuick(j, j); if (x > 0.) { x = g.getQuick(j) / x; // p[j] = g[j]/S[j] g.setQuick(j, x); // overwrite g by p } else g.setQuick(j, 0.); } DoubleMatrix1D beta = alg.mult(V, g); // V*p return beta.toArray(); } }
public static void main(String[] args) { double[][] arg1 = {{1, 1, 1}, {2, 3, 2}, {4, 7, 3}}; DenseDoubleMatrix2D obj1 = new DenseDoubleMatrix2D(arg1); // rot double[][] arg2 = {{5, 5, 5}, {8, 8, 8}, {2, 2, 2}}; DenseDoubleMatrix2D obj2 = new DenseDoubleMatrix2D(arg2); // grŸn double[][] arg3 = {{4, 5, 6}, {3, 2, 1}, {1, 2, 1}}; DenseDoubleMatrix2D obj3 = new DenseDoubleMatrix2D(arg3); // schwarz System.out.println("obj1\n" + obj1); System.out.println("obj2\n" + obj2); System.out.println("obj3\n" + obj3); double[][][] pair21 = {arg1, arg2}; Transformation trans21 = Kabsch.calculateTransformation(pair21); // grŸn -> rot DenseDoubleMatrix2D rot21 = trans21.peekRotation(); DenseDoubleMatrix1D trl21 = trans21.peekTranslation(); System.out.println("rot21\n" + rot21); System.out.println("trl21\n" + trl21); double[][][] pair12 = {arg2, arg1}; Transformation trans12 = Kabsch.calculateTransformation(pair12); // grŸn -> rot DenseDoubleMatrix2D rot12 = trans12.peekRotation(); DenseDoubleMatrix1D trl12 = trans12.peekTranslation(); System.out.println("rot12\n" + rot12); System.out.println("trl12\n" + trl12); double[][][] pair32 = {arg2, arg3}; Transformation trans32 = Kabsch.calculateTransformation(pair32); // schwarz -> grŸn DenseDoubleMatrix2D rot32 = trans32.peekRotation(); DenseDoubleMatrix1D trl32 = trans32.peekTranslation(); System.out.println("rot32\n" + rot32); System.out.println("trl32\n" + trl32.toString()); DenseDoubleMatrix2D arg2onarg1 = new DenseDoubleMatrix2D(trans21.transform(arg2)); // grŸn -> rot System.out.println(arg2onarg1.toString()); DenseDoubleMatrix2D uni21 = createUniMatrix(rot21, trl21); DenseDoubleMatrix2D uni32 = createUniMatrix(rot32, trl32); System.out.println("uni21\n" + uni21.toString()); System.out.println("uni32\n" + uni32.toString()); Algebra alg = new Algebra(); DenseDoubleMatrix2D result = (DenseDoubleMatrix2D) alg.mult( DoubleFactory2D.dense.identity(4), computeTransitiveTransformation( (DenseDoubleMatrix2D) DoubleFactory2D.dense.identity(4), uni32, uni21)); System.out.println("action results\n" + result); System.out.println("moved points\n" + movePoints(result, obj3).toString()); }
public static DenseDoubleMatrix2D computeTransitiveTransformation( DenseDoubleMatrix2D priorTransformationOfMover, DenseDoubleMatrix2D actualMovementKabsch, DenseDoubleMatrix2D priorMovementOfBlueprint) { Algebra alg = new Algebra(); priorTransformationOfMover = (DenseDoubleMatrix2D) alg.inverse(priorTransformationOfMover); return (DenseDoubleMatrix2D) alg.mult( priorMovementOfBlueprint, alg.mult(priorTransformationOfMover, actualMovementKabsch)); // return // (DenseDoubleMatrix2D)alg.mult(alg.mult(actualMovementKabsch,priorTransformationOfMover),priorMovementOfBlueprint); }
/** Creates a new instance of testmatrix */ public GLSsolver(double[][] p_MatrixgleichNull) throws IllegalArgumentException { // -------------------------------------- // Kontrolle, ob Eingabematrix rechteckig // -------------------------------------- int nplus1 = p_MatrixgleichNull[0].length; for (int i = 1; i < p_MatrixgleichNull.length; i++) { // Zeilen i if (p_MatrixgleichNull[i].length != nplus1) { System.err.println( "Programmfehler: Matrix des GLS ist nicht rechteckig! (im solver entdeckt)"); throw new IllegalArgumentException(); } } if (nplus1 <= 1) throw new IllegalArgumentException("keine Unbekannte"); // keine Unbekannte!!! // Umgeht einen Fehler in der colt-Bibliothek // TODO wenn behoben, Workaround entfernen // ------ int anzGl = p_MatrixgleichNull.length; if (anzGl < nplus1 - 1) { // anzGleichungen < anz Unbekannte if (debug) System.out.println("WorkAround fuer Fehler in colt: 0 = 0 Gleichungen anhaengen"); anzGl = nplus1 - 1; // = Anzahl Unbek, 0 0 0 ... 0 = 0 Zeile angehängt } // ------------------------- // Daten in A und b einlesen // ------------------------- // so dass A*x = b A = new DenseDoubleMatrix2D(anzGl, (nplus1 - 1)); DenseDoubleMatrix2D b = new DenseDoubleMatrix2D(anzGl, 1); for (int i = 0; i < p_MatrixgleichNull.length; i++) { // Zeilen i for (int j = 0; j < nplus1 - 1; j++) { // Spalten A.set(i, j, p_MatrixgleichNull[i][j]); } b.set(i, 0, -p_MatrixgleichNull[i][nplus1 - 1]); } if (debug) { System.out.println(" A = " + A.toString()); System.out.println(" b = " + b.toString()); System.out.println(""); } // -------------- // LR - Zerlegung // -------------- LUDecomposition ALU = new LUDecomposition(A); if (debug) System.out.println(ALU.toString()); DoubleMatrix2D L = ALU.getL(); R = ALU.getU(); int[] piv = ALU.getPivot(); Algebra alg = new Algebra(); // if (debug) System.out.println("L = " + L.toString()); // if (debug) System.out.println("Kontrolle L*R = " + alg.mult(L,R).toString()); // if (debug) System.out.println("Kontrolle P*b = " + alg.permute(b, piv, null) ); // // if (debug) System.out.println("Rx = c: R = " + R.toString()); // if (debug) System.out.println("alg.permute(b, piv, null) = " + alg.permute(b, piv, // null).toString()); c = alg.solve(L, alg.permute(b, piv, null)); // TODO: kann zu Problemen führen, // wenn weniger Gleichungen als Unbek --> s.Workaround oben if (debug) System.out.println("Lc = Pb: c = " + c.toString()); if (debug) { System.out.println("Rang A: " + alg.rank(A)); System.out.println("Rang R: " + alg.rank(R)); } assert (alg.rank(A) == alg.rank(R)) : "Rang von A ungleich Rang von R --> Programmfehler"; anzUnbestParam = A.columns() - alg.rank(A); if (debug) System.out.println("Anz unbest Parameter: " + anzUnbestParam); }