@Override
  public PointTracker<GrayF32> createTracker() {
    DescribePointBrief<GrayF32> brief =
        FactoryDescribePointAlgs.brief(
            FactoryBriefDefinition.gaussian2(new Random(123), 16, 512),
            FactoryBlurFilter.gaussian(GrayF32.class, 0, 4));

    GeneralFeatureDetector<GrayF32, GrayF32> corner =
        FactoryDetectPoint.createShiTomasi(
            new ConfigGeneralDetector(100, 2, 0), false, GrayF32.class);

    InterestPointDetector<GrayF32> detector =
        FactoryInterestPoint.wrapPoint(corner, 1, GrayF32.class, GrayF32.class);
    ScoreAssociateHamming_B score = new ScoreAssociateHamming_B();

    AssociateDescription<TupleDesc_B> association = FactoryAssociation.greedy(score, 400, true);

    PointTracker<GrayF32> pointTracker =
        FactoryPointTracker.combined(
            detector,
            null,
            new WrapDescribeBrief<>(brief, GrayF32.class),
            association,
            null,
            20,
            GrayF32.class);

    return pointTracker;
  }
  public <II extends ImageSingleBand> double[][] harder(BufferedImage image) {
    MultiSpectral<ImageFloat32> colorImage =
        ConvertBufferedImage.convertFromMulti(image, null, true, ImageFloat32.class);
    // convert the color image to greyscale
    ImageFloat32 greyscaleImage =
        ConvertImage.average((MultiSpectral<ImageFloat32>) colorImage, null);

    // SURF works off of integral images
    Class<II> integralType = GIntegralImageOps.getIntegralType(ImageFloat32.class);

    // define the feature detection algorithm
    NonMaxSuppression extractor =
        FactoryFeatureExtractor.nonmax(new ConfigExtract(2, detectThreshold, 5, true));
    FastHessianFeatureDetector<II> detector =
        new FastHessianFeatureDetector<II>(extractor, maxFeaturesPerScale, 2, 9, 4, 4);

    // estimate orientation
    OrientationIntegral<II> orientation = FactoryOrientationAlgs.sliding_ii(null, integralType);

    DescribePointSurf<II> descriptor =
        FactoryDescribePointAlgs.<II>surfStability(null, integralType);

    // compute the integral image of the greyscale 'image'
    II integralgrey =
        GeneralizedImageOps.createSingleBand(
            integralType, greyscaleImage.width, greyscaleImage.height);
    GIntegralImageOps.transform(greyscaleImage, integralgrey);

    // detect fast hessian features
    detector.detect(integralgrey);

    // === This is the point were the code starts deviating from the standard SURF! ===
    // tell algorithms which image to process
    orientation.setImage(integralgrey);

    List<ScalePoint> points = detector.getFoundPoints();
    double[][] descriptions = new double[points.size()][3 * descriptor.getDescriptionLength()];

    double[] angles = new double[points.size()];
    int l = 0;
    for (ScalePoint p : points) {
      orientation.setScale(p.scale);
      angles[l] = orientation.compute(p.x, p.y);
      l++;
    }

    for (int i = 0; i < 3; i++) {
      // check if it is actually a greyscale image, take always the 1st band!
      ImageFloat32 colorImageBand = null;
      if (colorImage.getNumBands() == 1) {
        colorImageBand = colorImage.getBand(0);
      } else {
        colorImageBand = colorImage.getBand(i);
      }

      // compute the integral image of the i-th band of the color 'image'
      II integralband =
          GeneralizedImageOps.createSingleBand(
              integralType, colorImageBand.width, colorImageBand.height);
      GIntegralImageOps.transform(colorImageBand, integralband);

      // tell algorithms which image to process
      // orientation.setImage(integralband);
      descriptor.setImage(integralband);

      int j = 0;
      for (ScalePoint p : points) {
        // estimate orientation
        // orientation.setScale(p.scale);
        // double angle = orientation.compute(p.x, p.y);
        // extract the SURF description for this region
        SurfFeature desc = descriptor.createDescription();
        descriptor.describe(p.x, p.y, angles[j], p.scale, (TupleDesc_F64) desc);
        double[] banddesc = desc.getValue();
        if (perBandNormalization) {
          banddesc = Normalization.normalizeL2(banddesc);
        }
        for (int k = 0; k < SURFLength; k++) {
          descriptions[j][i * SURFLength + k] = banddesc[k];
        }
        j++;
      }
    }

    return descriptions;
  }