// -------------------------------------------------------------------------
 @Override
 public double volatility(
     double forward, double strike, double timeToExpiry, SabrFormulaData data) {
   ArgChecker.notNull(data, "data");
   double alpha = data.getAlpha();
   double beta = data.getBeta();
   double rho = data.getRho();
   double nu = data.getNu();
   return volatility(forward, strike, timeToExpiry, alpha, beta, rho, nu);
 }
  @SuppressWarnings("null")
  private double fdSensitivity(
      EuropeanVanillaOption optionData,
      double forward,
      SabrFormulaData sabrData,
      SabrParameter param,
      double delta) {

    Function<SabrFormulaData, Double> funcC = null;
    Function<SabrFormulaData, Double> funcB = null;
    Function<SabrFormulaData, Double> funcA = null;
    SabrFormulaData dataC = null;
    SabrFormulaData dataB = sabrData;
    SabrFormulaData dataA = null;
    Function<SabrFormulaData, Double> func = getVolatilityFunction(optionData, forward);

    FiniteDifferenceType fdType = null;

    switch (param) {
      case Strike:
        double strike = optionData.getStrike();
        if (strike >= delta) {
          fdType = FiniteDifferenceType.CENTRAL;
          funcA = getVolatilityFunction(withStrike(optionData, strike - delta), forward);
          funcC = getVolatilityFunction(withStrike(optionData, strike + delta), forward);
        } else {
          fdType = FiniteDifferenceType.FORWARD;
          funcA = func;
          funcB = getVolatilityFunction(withStrike(optionData, strike + delta), forward);
          funcC = getVolatilityFunction(withStrike(optionData, strike + 2 * delta), forward);
        }
        dataC = sabrData;
        dataB = sabrData;
        dataA = sabrData;
        break;
      case Forward:
        if (forward > delta) {
          fdType = FiniteDifferenceType.CENTRAL;
          funcA = getVolatilityFunction(optionData, forward - delta);
          funcC = getVolatilityFunction(optionData, forward + delta);
        } else {
          fdType = FiniteDifferenceType.FORWARD;
          funcA = func;
          funcB = getVolatilityFunction(optionData, forward + delta);
          funcC = getVolatilityFunction(optionData, forward + 2 * delta);
        }
        dataC = sabrData;
        dataB = sabrData;
        dataA = sabrData;
        break;
      case Alpha:
        double a = sabrData.getAlpha();
        if (a >= delta) {
          fdType = FiniteDifferenceType.CENTRAL;
          dataA = sabrData.withAlpha(a - delta);
          dataC = sabrData.withAlpha(a + delta);
        } else {
          fdType = FiniteDifferenceType.FORWARD;
          dataA = sabrData;
          dataB = sabrData.withAlpha(a + delta);
          dataC = sabrData.withAlpha(a + 2 * delta);
        }
        funcC = func;
        funcB = func;
        funcA = func;
        break;
      case Beta:
        double b = sabrData.getBeta();
        if (b >= delta) {
          fdType = FiniteDifferenceType.CENTRAL;
          dataA = sabrData.withBeta(b - delta);
          dataC = sabrData.withBeta(b + delta);
        } else {
          fdType = FiniteDifferenceType.FORWARD;
          dataA = sabrData;
          dataB = sabrData.withBeta(b + delta);
          dataC = sabrData.withBeta(b + 2 * delta);
        }
        funcC = func;
        funcB = func;
        funcA = func;
        break;
      case Nu:
        double n = sabrData.getNu();
        if (n >= delta) {
          fdType = FiniteDifferenceType.CENTRAL;
          dataA = sabrData.withNu(n - delta);
          dataC = sabrData.withNu(n + delta);
        } else {
          fdType = FiniteDifferenceType.FORWARD;
          dataA = sabrData;
          dataB = sabrData.withNu(n + delta);
          dataC = sabrData.withNu(n + 2 * delta);
        }
        funcC = func;
        funcB = func;
        funcA = func;
        break;
      case Rho:
        double r = sabrData.getRho();
        if ((r + 1) < delta) {
          fdType = FiniteDifferenceType.FORWARD;
          dataA = sabrData;
          dataB = sabrData.withRho(r + delta);
          dataC = sabrData.withRho(r + 2 * delta);
        } else if ((1 - r) < delta) {
          fdType = FiniteDifferenceType.BACKWARD;
          dataA = sabrData.withRho(r - 2 * delta);
          dataB = sabrData.withRho(r - delta);
          dataC = sabrData;
        } else {
          fdType = FiniteDifferenceType.CENTRAL;
          dataC = sabrData.withRho(r + delta);
          dataA = sabrData.withRho(r - delta);
        }
        funcC = func;
        funcB = func;
        funcA = func;
        break;
      default:
        throw new MathException("enum not found");
    }

    if (fdType != null) {
      switch (fdType) {
        case FORWARD:
          return (-1.5 * funcA.apply(dataA) + 2.0 * funcB.apply(dataB) - 0.5 * funcC.apply(dataC))
              / delta;
        case BACKWARD:
          return (0.5 * funcA.apply(dataA) - 2.0 * funcB.apply(dataB) + 1.5 * funcC.apply(dataC))
              / delta;
        case CENTRAL:
          return (funcC.apply(dataC) - funcA.apply(dataA)) / 2.0 / delta;
        default:
          throw new MathException("enum not found");
      }
    }
    throw new MathException("enum not found");
  }
 /**
  * Computes the first and second order derivatives of the Black implied volatility in the SABR
  * model.
  *
  * <p>The first derivative values will be stored in the input array {@code volatilityD} The array
  * contains, [0] Derivative w.r.t the forward, [1] the derivative w.r.t the strike, [2] the
  * derivative w.r.t. to alpha, [3] the derivative w.r.t. to beta, [4] the derivative w.r.t. to
  * rho, and [5] the derivative w.r.t. to nu. Thus the length of the array should be 6.
  *
  * <p>The second derivative values will be stored in the input array {@code volatilityD2}. Only
  * the second order derivative with respect to the forward and strike are implemented. The array
  * contains [0][0] forward-forward; [0][1] forward-strike; [1][1] strike-strike. Thus the size
  * should be 2 x 2.
  *
  * <p>Around ATM, a first order expansion is used to due to some 0/0-type indetermination. The
  * second order derivative produced is poor around ATM.
  *
  * @param forward the forward value of the underlying
  * @param strike the strike value of the option
  * @param timeToExpiry the time to expiry of the option
  * @param data the SABR data.
  * @param volatilityD the array used to return the first order derivative
  * @param volatilityD2 the array of array used to return the second order derivative
  * @return the Black implied volatility
  */
 @Override
 public double volatilityAdjoint2(
     double forward,
     double strike,
     double timeToExpiry,
     SabrFormulaData data,
     double[] volatilityD,
     double[][] volatilityD2) {
   double k = Math.max(strike, 0.000001);
   double alpha = data.getAlpha();
   double beta = data.getBeta();
   double rho = data.getRho();
   double nu = data.getNu();
   // Forward
   double h0 = (1 - beta) / 2;
   double h1 = forward * k;
   double h1h0 = Math.pow(h1, h0);
   double h12 = h1h0 * h1h0;
   double h2 = Math.log(forward / k);
   double h22 = h2 * h2;
   double h23 = h22 * h2;
   double h24 = h23 * h2;
   double f1 = h1h0 * (1 + h0 * h0 / 6.0 * (h22 + h0 * h0 / 20.0 * h24));
   double f2 = nu / alpha * h1h0 * h2;
   double f3 =
       h0 * h0 / 6.0 * alpha * alpha / h12
           + rho * beta * nu * alpha / 4.0 / h1h0
           + (2 - 3 * rho * rho) / 24.0 * nu * nu;
   double sqrtf2 = Math.sqrt(1 - 2 * rho * f2 + f2 * f2);
   double f2x = 0.0;
   double x = 0.0, xp = 0, xpp = 0;
   if (DoubleMath.fuzzyEquals(f2, 0.0, SMALL_Z)) {
     f2x = 1.0 - 0.5 * f2 * rho; // small f2 expansion to f2^2 terms
   } else {
     if (DoubleMath.fuzzyEquals(rho, 1.0, RHO_EPS)) {
       x =
           f2 < 1.0
               ? -Math.log(1.0 - f2) - 0.5 * Math.pow(f2 / (f2 - 1.0), 2) * (1.0 - rho)
               : Math.log(2.0 * f2 - 2.0) - Math.log(1.0 - rho);
     } else {
       x = Math.log((sqrtf2 + f2 - rho) / (1 - rho));
     }
     xp = 1. / sqrtf2;
     xpp = (rho - f2) / Math.pow(sqrtf2, 3.0);
     f2x = f2 / x;
   }
   double sigma = Math.max(MIN_VOL, alpha / f1 * f2x * (1 + f3 * timeToExpiry));
   // First level
   double h0Dbeta = -0.5;
   double sigmaDf1 = -sigma / f1;
   double sigmaDf2 = 0;
   if (DoubleMath.fuzzyEquals(f2, 0.0, SMALL_Z)) {
     sigmaDf2 = alpha / f1 * (1 + f3 * timeToExpiry) * -0.5 * rho;
   } else {
     sigmaDf2 = alpha / f1 * (1 + f3 * timeToExpiry) * (1.0 / x - f2 * xp / (x * x));
   }
   double sigmaDf3 = alpha / f1 * f2x * timeToExpiry;
   double sigmaDf4 = f2x / f1 * (1 + f3 * timeToExpiry);
   double sigmaDx = -alpha / f1 * f2 / (x * x) * (1 + f3 * timeToExpiry);
   double[][] sigmaD2ff = new double[3][3];
   sigmaD2ff[0][0] = -sigmaDf1 / f1 + sigma / (f1 * f1); // OK
   sigmaD2ff[0][1] = -sigmaDf2 / f1;
   sigmaD2ff[0][2] = -sigmaDf3 / f1;
   if (DoubleMath.fuzzyEquals(f2, 0.0, SMALL_Z)) {
     sigmaD2ff[1][2] = alpha / f1 * -0.5 * rho * timeToExpiry;
   } else {
     sigmaD2ff[1][1] =
         alpha
             / f1
             * (1 + f3 * timeToExpiry)
             * (-2 * xp / (x * x) - f2 * xpp / (x * x) + 2 * f2 * xp * xp / (x * x * x));
     sigmaD2ff[1][2] = alpha / f1 * timeToExpiry * (1.0 / x - f2 * xp / (x * x));
   }
   sigmaD2ff[2][2] = 0.0;
   //      double sigma = alpha / f1 * f2x * (1 + f3 * theta);
   // Second level
   double[] f1Dh = new double[3];
   double[] f2Dh = new double[3];
   double[] f3Dh = new double[3];
   f1Dh[0] = h1h0 * (h0 * (h22 / 3.0 + h0 * h0 / 40.0 * h24)) + Math.log(h1) * f1;
   f1Dh[1] = h0 * f1 / h1;
   f1Dh[2] = h1h0 * (h0 * h0 / 6.0 * (2.0 * h2 + h0 * h0 / 5.0 * h23));
   f2Dh[0] = Math.log(h1) * f2;
   f2Dh[1] = h0 * f2 / h1;
   f2Dh[2] = nu / alpha * h1h0;
   f3Dh[0] =
       h0 / 3.0 * alpha * alpha / h12
           - 2 * h0 * h0 / 6.0 * alpha * alpha / h12 * Math.log(h1)
           - rho * beta * nu * alpha / 4.0 / h1h0 * Math.log(h1);
   f3Dh[1] =
       -2 * h0 * h0 / 6.0 * alpha * alpha / h12 * h0 / h1
           - rho * beta * nu * alpha / 4.0 / h1h0 * h0 / h1;
   f3Dh[2] = 0.0;
   double[] f1Dp = new double[4]; // Derivative to sabr parameters
   double[] f2Dp = new double[4];
   double[] f3Dp = new double[4];
   double[] f4Dp = new double[4];
   f1Dp[0] = 0.0;
   f1Dp[1] = f1Dh[0] * h0Dbeta;
   f1Dp[2] = 0.0;
   f1Dp[3] = 0.0;
   f2Dp[0] = -f2 / alpha;
   f2Dp[1] = f2Dh[0] * h0Dbeta;
   f2Dp[2] = 0.0;
   f2Dp[3] = h1h0 * h2 / alpha;
   f3Dp[0] = h0 * h0 / 3.0 * alpha / h12 + rho * beta * nu / 4.0 / h1h0;
   f3Dp[1] = rho * nu * alpha / 4.0 / h1h0 + f3Dh[0] * h0Dbeta;
   f3Dp[2] = beta * nu * alpha / 4.0 / h1h0 - rho / 4.0 * nu * nu;
   f3Dp[3] = rho * beta * alpha / 4.0 / h1h0 + (2 - 3 * rho * rho) / 12.0 * nu;
   f4Dp[0] = 1.0;
   f4Dp[1] = 0.0;
   f4Dp[2] = 0.0;
   f4Dp[3] = 0.0;
   double sigmaDh1 = sigmaDf1 * f1Dh[1] + sigmaDf2 * f2Dh[1] + sigmaDf3 * f3Dh[1];
   double sigmaDh2 = sigmaDf1 * f1Dh[2] + sigmaDf2 * f2Dh[2] + sigmaDf3 * f3Dh[2];
   double[][] f1D2hh = new double[2][2]; // No h0
   double[][] f2D2hh = new double[2][2];
   double[][] f3D2hh = new double[2][2];
   f1D2hh[0][0] = h0 * (h0 - 1) * f1 / (h1 * h1);
   f1D2hh[0][1] = h0 * h1h0 / h1 * h0 * h0 / 6.0 * (2.0 * h2 + 4.0 * h0 * h0 / 20.0 * h23);
   f1D2hh[1][1] = h1h0 * (h0 * h0 / 6.0 * (2.0 + 12.0 * h0 * h0 / 20.0 * h2));
   f2D2hh[0][0] = h0 * (h0 - 1) * f2 / (h1 * h1);
   f2D2hh[0][1] = nu / alpha * h0 * h1h0 / h1;
   f2D2hh[1][1] = 0.0;
   f3D2hh[0][0] =
       2 * h0 * (2 * h0 + 1) * h0 * h0 / 6.0 * alpha * alpha / (h12 * h1 * h1)
           + h0 * (h0 + 1) * rho * beta * nu * alpha / 4.0 / (h1h0 * h1 * h1);
   f3D2hh[0][1] = 0.0;
   f3D2hh[1][1] = 0.0;
   double[][] sigmaD2hh = new double[2][2]; // No h0
   for (int loopx = 0; loopx < 2; loopx++) {
     for (int loopy = loopx; loopy < 2; loopy++) {
       sigmaD2hh[loopx][loopy] =
           (sigmaD2ff[0][0] * f1Dh[loopy + 1]
                       + sigmaD2ff[0][1] * f2Dh[loopy + 1]
                       + sigmaD2ff[0][2] * f3Dh[loopy + 1])
                   * f1Dh[loopx + 1]
               + sigmaDf1 * f1D2hh[loopx][loopy]
               + (sigmaD2ff[0][1] * f1Dh[loopy + 1]
                       + sigmaD2ff[1][1] * f2Dh[loopy + 1]
                       + sigmaD2ff[1][2] * f3Dh[loopy + 1])
                   * f2Dh[loopx + 1]
               + sigmaDf2 * f2D2hh[loopx][loopy]
               + (sigmaD2ff[0][2] * f1Dh[loopy + 1]
                       + sigmaD2ff[1][2] * f2Dh[loopy + 1]
                       + sigmaD2ff[2][2] * f3Dh[loopy + 1])
                   * f3Dh[loopx + 1]
               + sigmaDf3 * f3D2hh[loopx][loopy];
     }
   }
   // Third level
   double h1Df = k;
   double h1Dk = forward;
   double h1D2ff = 0.0;
   double h1D2kf = 1.0;
   double h1D2kk = 0.0;
   double h2Df = 1.0 / forward;
   double h2Dk = -1.0 / k;
   double h2D2ff = -1 / (forward * forward);
   double h2D2fk = 0.0;
   double h2D2kk = 1.0 / (k * k);
   volatilityD[0] = sigmaDh1 * h1Df + sigmaDh2 * h2Df;
   volatilityD[1] = sigmaDh1 * h1Dk + sigmaDh2 * h2Dk;
   volatilityD[2] =
       sigmaDf1 * f1Dp[0] + sigmaDf2 * f2Dp[0] + sigmaDf3 * f3Dp[0] + sigmaDf4 * f4Dp[0];
   volatilityD[3] =
       sigmaDf1 * f1Dp[1] + sigmaDf2 * f2Dp[1] + sigmaDf3 * f3Dp[1] + sigmaDf4 * f4Dp[1];
   if (DoubleMath.fuzzyEquals(f2, 0.0, SMALL_Z)) {
     volatilityD[4] = -0.5 * f2 + sigmaDf3 * f3Dp[2];
   } else {
     double xDr;
     if (DoubleMath.fuzzyEquals(rho, 1.0, RHO_EPS)) {
       xDr =
           f2 > 1.0
               ? 1.0 / (1.0 - rho) + (0.5 - f2) / (f2 - 1.0) / (f2 - 1.0)
               : 0.5 * Math.pow(f2 / (1.0 - f2), 2.0)
                   + 0.25 * (f2 - 4.0) * Math.pow(f2 / (f2 - 1.0), 3) / (f2 - 1.0) * (1.0 - rho);
       if (Doubles.isFinite(xDr)) {
         volatilityD[4] =
             sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2];
       } else {
         volatilityD[4] = Double.NEGATIVE_INFINITY;
       }
     } else {
       xDr = (-f2 / sqrtf2 - 1 + (sqrtf2 + f2 - rho) / (1 - rho)) / (sqrtf2 + f2 - rho);
       volatilityD[4] =
           sigmaDf1 * f1Dp[2] + sigmaDx * xDr + sigmaDf3 * f3Dp[2] + sigmaDf4 * f4Dp[2];
     }
   }
   volatilityD[5] =
       sigmaDf1 * f1Dp[3] + sigmaDf2 * f2Dp[3] + sigmaDf3 * f3Dp[3] + sigmaDf4 * f4Dp[3];
   volatilityD2[0][0] =
       (sigmaD2hh[0][0] * h1Df + sigmaD2hh[0][1] * h2Df) * h1Df
           + sigmaDh1 * h1D2ff
           + (sigmaD2hh[0][1] * h1Df + sigmaD2hh[1][1] * h2Df) * h2Df
           + sigmaDh2 * h2D2ff;
   volatilityD2[0][1] =
       (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Df
           + sigmaDh1 * h1D2kf
           + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Df
           + sigmaDh2 * h2D2fk;
   volatilityD2[1][0] = volatilityD2[0][1];
   volatilityD2[1][1] =
       (sigmaD2hh[0][0] * h1Dk + sigmaD2hh[0][1] * h2Dk) * h1Dk
           + sigmaDh1 * h1D2kk
           + (sigmaD2hh[0][1] * h1Dk + sigmaD2hh[1][1] * h2Dk) * h2Dk
           + sigmaDh2 * h2D2kk;
   return sigma;
 }