/**
   * Compute next=state probabilities. i.e. compute the probability of being in a state in {@code
   * target} in the next step.
   *
   * @param stpg The STPG
   * @param target Target states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   */
  public ModelCheckerResult computeNextProbs(STPG stpg, BitSet target, boolean min1, boolean min2)
      throws PrismException {
    ModelCheckerResult res = null;
    int n;
    double soln[], soln2[];
    long timer;

    timer = System.currentTimeMillis();

    // Store num states
    n = stpg.getNumStates();

    // Create/initialise solution vector(s)
    soln = Utils.bitsetToDoubleArray(target, n);
    soln2 = new double[n];

    // Next-step probabilities
    stpg.mvMultMinMax(soln, min1, min2, soln2, null, false, null);

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln2;
    res.numIters = 1;
    res.timeTaken = timer / 1000.0;
    return res;
  }
  /**
   * Compute bounded reachability/until probabilities. i.e. compute the min/max probability of
   * reaching a state in {@code target}, within k steps, and while remaining in states in @{code
   * remain}.
   *
   * @param stpg The STPG
   * @param remain Remain in these states (optional: null means "all")
   * @param target Target states
   * @param k Bound
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Initial solution vector - pass null for default
   * @param results Optional array of size k+1 to store (init state) results for each step (null if
   *     unused)
   */
  public ModelCheckerResult computeBoundedReachProbs(
      STPG stpg,
      BitSet remain,
      BitSet target,
      int k,
      boolean min1,
      boolean min2,
      double init[],
      double results[])
      throws PrismException {
    // TODO: implement until

    ModelCheckerResult res = null;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[];
    long timer;

    // Start bounded probabilistic reachability
    timer = System.currentTimeMillis();
    if (verbosity >= 1) mainLog.println("\nStarting bounded probabilistic reachability...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;

    // Initialise solution vectors. Use passed in initial vector, if present
    if (init != null) {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i];
    } else {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0;
    }
    // Store intermediate results if required
    // (compute min/max value over initial states for first step)
    if (results != null) {
      results[0] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2);
    }

    // Start iterations
    iters = 0;
    while (iters < k) {
      iters++;
      // Matrix-vector multiply and min/max ops
      stpg.mvMultMinMax(soln, min1, min2, soln2, target, true, null);
      // Store intermediate results if required
      // (compute min/max value over initial states for this step)
      if (results != null) {
        results[iters] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2);
      }
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
    }

    // Print vector (for debugging)
    // mainLog.println(soln);

    // Finished bounded probabilistic reachability
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print(
          "Bounded probabilistic reachability ("
              + (min1 ? "min" : "max")
              + (min2 ? "min" : "max")
              + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.lastSoln = soln2;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    res.timePre = 0.0;
    return res;
  }
  /**
   * Compute reachability probabilities using value iteration.
   *
   * @param stpg The STPG
   * @param no Probability 0 states
   * @param yes Probability 1 states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (will be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  protected ModelCheckerResult computeReachProbsValIter(
      STPG stpg, BitSet no, BitSet yes, boolean min1, boolean min2, double init[], BitSet known)
      throws PrismException {
    ModelCheckerResult res = null;
    BitSet unknown;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[], initVal;
    int adv[] = null;
    boolean genAdv, done;
    long timer;

    // Are we generating an optimal adversary?
    genAdv = exportAdv;

    // Start value iteration
    timer = System.currentTimeMillis();
    if (verbosity >= 1)
      mainLog.println(
          "Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;

    // Initialise solution vectors. Use (where available) the following in order of preference:
    // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value;
    // (4) initVal
    // where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
    initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
    if (init != null) {
      if (known != null) {
        for (i = 0; i < n; i++)
          soln[i] =
              soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      } else {
        for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      }
    } else {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
    }

    // Determine set of states actually need to compute values for
    unknown = new BitSet();
    unknown.set(0, n);
    unknown.andNot(yes);
    unknown.andNot(no);
    if (known != null) unknown.andNot(known);

    // Create/initialise adversary storage
    if (genAdv) {
      adv = new int[n];
      for (i = 0; i < n; i++) {
        adv[i] = -1;
      }
    }

    // Start iterations
    iters = 0;
    done = false;
    while (!done && iters < maxIters) {
      iters++;
      // Matrix-vector multiply and min/max ops
      stpg.mvMultMinMax(soln, min1, min2, soln2, unknown, false, genAdv ? adv : null);
      // Check termination
      done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
    }

    // Finished value iteration
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Non-convergence is an error (usually)
    if (!done && errorOnNonConverge) {
      String msg = "Iterative method did not converge within " + iters + " iterations.";
      msg +=
          "\nConsider using a different numerical method or increasing the maximum number of iterations";
      throw new PrismException(msg);
    }

    // Print adversary
    if (genAdv) {
      PrismLog out = new PrismFileLog(exportAdvFilename);
      for (i = 0; i < n; i++) {
        out.println(i + " " + (adv[i] != -1 ? stpg.getAction(i, adv[i]) : "-"));
      }
      out.println();
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    return res;
  }