private PsmRetTimeDistribution getPercolatorResults() { List<PercolatorFilteredPsmResult> filteredResults = null; if (scoreCutoff == 0.01) { // Look in the database first for pre-calculated results PercolatorFilteredPsmResultDAO dao = DAOFactory.instance().getPrecolatorFilteredPsmResultDAO(); filteredResults = dao.loadForAnalysis(analysisId); } if (filteredResults == null || filteredResults.size() == 0) { // Results were not found in the database; calculate now PercolatorFilteredPsmDistributionCalculator calc = new PercolatorFilteredPsmDistributionCalculator(analysisId, scoreCutoff); calc.calculate(); filteredResults = calc.getFilteredResults(); } if (filteredResults == null || filteredResults.size() == 0) { log.error("No results for searchAnalysisID: " + analysisId); return null; } PercolatorFilteredPsmResultDAO statsDao = DAOFactory.instance().getPrecolatorFilteredPsmResultDAO(); double populationMax = RoundingUtils.getInstance().roundOne(statsDao.getPopulationMax()); double populationMin = RoundingUtils.getInstance().roundOne(statsDao.getPopulationMin()); double populationMean = RoundingUtils.getInstance().roundOne(statsDao.getPopulationAvgFilteredPercent()); double populationStddev = RoundingUtils.getInstance().roundOne(statsDao.getPopulationStdDevFilteredPercent()); int[] allPsmCounts = null; int[] filteredPsmCounts = null; int maxPsmCount = 0; double maxRt = 0; List<FileStats> fileStats = new ArrayList<FileStats>(filteredResults.size()); MsRunSearchAnalysisDAO rsaDao = DAOFactory.instance().getMsRunSearchAnalysisDAO(); maxRt = getMaxRtForPercolatorResults(filteredResults.get(0).getBinnedResults()); int binIncr = getBinIncrement(maxRt); int numBins = (int) Math.ceil(maxRt / binIncr); for (PercolatorFilteredPsmResult res : filteredResults) { int runSearchAnalysisId = res.getRunSearchAnalysisId(); String filename = rsaDao.loadFilenameForRunSearchAnalysis(runSearchAnalysisId); FileStats stats = new FileStats(res.getRunSearchAnalysisId(), filename); stats.setGoodCount(res.getFiltered()); stats.setTotalCount(res.getTotal()); if (scoreCutoff == 0.01) { stats.setPopulationMean(populationMean); stats.setPopulationStandardDeviation(populationStddev); stats.setPopulationMin(populationMin); stats.setPopulationMax(populationMax); } fileStats.add(stats); List<PercolatorBinnedPsmResult> binnedResults = res.getBinnedResults(); Collections.sort( binnedResults, new Comparator<PercolatorBinnedPsmResult>() { @Override public int compare(PercolatorBinnedPsmResult o1, PercolatorBinnedPsmResult o2) { return Double.valueOf(o1.getBinStart()).compareTo(o2.getBinStart()); } }); if (allPsmCounts == null) allPsmCounts = new int[numBins]; if (filteredPsmCounts == null) filteredPsmCounts = new int[numBins]; maxRt = Math.max(maxRt, binnedResults.get(binnedResults.size() - 1).getBinEnd()); int idx = 0; for (int j = 0; j < binnedResults.size(); j++) { PercolatorBinnedPsmResult binned = binnedResults.get(j); allPsmCounts[idx] += binned.getTotal(); filteredPsmCounts[idx] += binned.getFiltered(); maxPsmCount = Math.max(allPsmCounts[idx], maxPsmCount); if (j > 0 && j % binIncr == 0) idx++; } } PsmRetTimeDistribution distribution = new PsmRetTimeDistribution(Program.PERCOLATOR); distribution.setScoreCutoff(this.scoreCutoff); distribution.setNumBins(allPsmCounts.length); distribution.setMaxRT(maxRt); distribution.setMaxPsmCount(maxPsmCount); distribution.setFilteredPsmCounts(filteredPsmCounts); distribution.setAllPsmCounts(allPsmCounts); distribution.setBinSize(binIncr); distribution.setFileStatsList(fileStats); return distribution; }
private PsmRetTimeDistribution getPeptideProphetResults() { List<ProphetFilteredPsmResult> filteredResults = null; if (scoreCutoff == QCStatsGetter.PEPPROPHET_ERR_RATE_DEFAULT) { // Look in the database first for pre-calculated results ProphetFilteredPsmResultDAO dao = DAOFactory.instance().getProphetFilteredPsmResultDAO(); filteredResults = dao.loadForAnalysis(analysisId); } if (filteredResults == null || filteredResults.size() == 0) { // Results were not found in the database; calculate now PeptideProphetRocDAO rocDao = DAOFactory.instance().getPeptideProphetRocDAO(); PeptideProphetROC roc = rocDao.loadRoc(analysisId); double probability = roc.getMinProbabilityForError(scoreCutoff); log.info("Probability for error rate of " + scoreCutoff + " is: " + probability); ProphetFilteredPsmDistributionCalculator calc = new ProphetFilteredPsmDistributionCalculator(analysisId, probability); calc.calculate(); filteredResults = calc.getFilteredResults(); } if (filteredResults == null || filteredResults.size() == 0) { log.error("No results for searchAnalysisID: " + analysisId); return null; } ProphetFilteredPsmResultDAO statsDao = DAOFactory.instance().getProphetFilteredPsmResultDAO(); double populationMax = RoundingUtils.getInstance().roundOne(statsDao.getPopulationMax()); double populationMin = RoundingUtils.getInstance().roundOne(statsDao.getPopulationMin()); double populationMean = RoundingUtils.getInstance().roundOne(statsDao.getPopulationAvgFilteredPercent()); double populationStddev = RoundingUtils.getInstance().roundOne(statsDao.getPopulationStdDevFilteredPercent()); int[] allPsmCounts = null; int[] filteredPsmCounts = null; int maxPsmCount = 0; double maxRt = 0; List<FileStats> fileStats = new ArrayList<FileStats>(filteredResults.size()); MsRunSearchAnalysisDAO rsaDao = DAOFactory.instance().getMsRunSearchAnalysisDAO(); maxRt = getMaxRtForProphetResults(filteredResults.get(0).getBinnedResults()); int binIncr = getBinIncrement(maxRt); int numBins = (int) Math.ceil(maxRt / binIncr); double actualScoreCutoff = -1.0; // actual probability cutoff used (that corresponds to the given error rate) for (ProphetFilteredPsmResult res : filteredResults) { actualScoreCutoff = res.getProbability(); int runSearchAnalysisId = res.getRunSearchAnalysisId(); String filename = rsaDao.loadFilenameForRunSearchAnalysis(runSearchAnalysisId); FileStats stats = new FileStats(res.getRunSearchAnalysisId(), filename); stats.setGoodCount(res.getFiltered()); stats.setTotalCount(res.getTotal()); if (scoreCutoff == 0.01) { stats.setPopulationMean(populationMean); stats.setPopulationStandardDeviation(populationStddev); stats.setPopulationMin(populationMin); stats.setPopulationMax(populationMax); } fileStats.add(stats); List<ProphetBinnedPsmResult> binnedResults = res.getBinnedResults(); Collections.sort( binnedResults, new Comparator<ProphetBinnedPsmResult>() { @Override public int compare(ProphetBinnedPsmResult o1, ProphetBinnedPsmResult o2) { return Double.valueOf(o1.getBinStart()).compareTo(o2.getBinStart()); } }); if (allPsmCounts == null) allPsmCounts = new int[numBins]; if (filteredPsmCounts == null) filteredPsmCounts = new int[numBins]; maxRt = Math.max(maxRt, binnedResults.get(binnedResults.size() - 1).getBinEnd()); int idx = 0; for (int j = 0; j < binnedResults.size(); j++) { ProphetBinnedPsmResult binned = binnedResults.get(j); allPsmCounts[idx] += binned.getTotal(); filteredPsmCounts[idx] += binned.getFiltered(); maxPsmCount = Math.max(allPsmCounts[idx], maxPsmCount); if (j > 0 && j % binIncr == 0) idx++; } } PsmRetTimeDistribution distribution = new PsmRetTimeDistribution(Program.PEPTIDE_PROPHET); distribution.setScoreCutoff(actualScoreCutoff); distribution.setNumBins(allPsmCounts.length); distribution.setMaxRT(maxRt); distribution.setMaxPsmCount(maxPsmCount); distribution.setFilteredPsmCounts(filteredPsmCounts); distribution.setAllPsmCounts(allPsmCounts); distribution.setBinSize(binIncr); distribution.setFileStatsList(fileStats); return distribution; }