void init() { baseInit(); _rangeEncoder.init(); lzma.sdk.rangecoder.Encoder.initBitModels(_isMatch); lzma.sdk.rangecoder.Encoder.initBitModels(_isRep0Long); lzma.sdk.rangecoder.Encoder.initBitModels(_isRep); lzma.sdk.rangecoder.Encoder.initBitModels(_isRepG0); lzma.sdk.rangecoder.Encoder.initBitModels(_isRepG1); lzma.sdk.rangecoder.Encoder.initBitModels(_isRepG2); lzma.sdk.rangecoder.Encoder.initBitModels(_posEncoders); _literalEncoder.init(); for (int i = 0; i < Base.kNumLenToPosStates; i++) { _posSlotEncoder[i].init(); } _lenEncoder.init(1 << _posStateBits); _repMatchLenEncoder.init(1 << _posStateBits); _posAlignEncoder.init(); _longestMatchWasFound = false; _optimumEndIndex = 0; _optimumCurrentIndex = 0; _additionalOffset = 0; }
void create() { if (_matchFinder == null) { int numHashBytes = 4; if (_matchFinderType == EMatchFinderTypeBT2) { numHashBytes = 2; } lzma.sdk.lz.BinTree bt = new lzma.sdk.lz.BinTree(numHashBytes); _matchFinder = bt; } _literalEncoder.create(_numLiteralPosStateBits, _numLiteralContextBits); if (_dictionarySize == _dictionarySizePrev && _numFastBytesPrev == _numFastBytes) { return; } _matchFinder.create(_dictionarySize, kNumOpts, _numFastBytes, Base.kMatchMaxLen + 1); _dictionarySizePrev = _dictionarySize; _numFastBytesPrev = _numFastBytes; }
int getOptimum(int position) throws IOException { if (_optimumEndIndex != _optimumCurrentIndex) { int lenRes = _optimum[_optimumCurrentIndex].PosPrev - _optimumCurrentIndex; backRes = _optimum[_optimumCurrentIndex].BackPrev; _optimumCurrentIndex = _optimum[_optimumCurrentIndex].PosPrev; return lenRes; } _optimumCurrentIndex = _optimumEndIndex = 0; int lenMain, numDistancePairs; if (!_longestMatchWasFound) { lenMain = readMatchDistances(); } else { lenMain = _longestMatchLength; _longestMatchWasFound = false; } numDistancePairs = _numDistancePairs; int numAvailableBytes = _matchFinder.getNumAvailableBytes() + 1; if (numAvailableBytes < 2) { backRes = -1; return 1; } if (numAvailableBytes > Base.kMatchMaxLen) { numAvailableBytes = Base.kMatchMaxLen; } int repMaxIndex = 0; int i; for (i = 0; i < Base.kNumRepDistances; i++) { reps[i] = _repDistances[i]; repLens[i] = _matchFinder.getMatchLen(0 - 1, reps[i], Base.kMatchMaxLen); if (repLens[i] > repLens[repMaxIndex]) { repMaxIndex = i; } } if (repLens[repMaxIndex] >= _numFastBytes) { backRes = repMaxIndex; int lenRes = repLens[repMaxIndex]; movePos(lenRes - 1); return lenRes; } if (lenMain >= _numFastBytes) { backRes = _matchDistances[numDistancePairs - 1] + Base.kNumRepDistances; movePos(lenMain - 1); return lenMain; } byte currentByte = _matchFinder.getIndexByte(0 - 1); byte matchByte = _matchFinder.getIndexByte(0 - _repDistances[0] - 1 - 1); if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2) { backRes = -1; return 1; } _optimum[0].State = _state; int posState = (position & _posStateMask); _optimum[1].Price = lzma.sdk.rangecoder.Encoder.getPrice0( _isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]) + _literalEncoder .getSubCoder(position, _previousByte) .getPrice(!Base.stateIsCharState(_state), matchByte, currentByte); _optimum[1].makeAsChar(); int matchPrice = lzma.sdk.rangecoder.Encoder.getPrice1( _isMatch[(_state << Base.kNumPosStatesBitsMax) + posState]); int repMatchPrice = matchPrice + lzma.sdk.rangecoder.Encoder.getPrice1(_isRep[_state]); if (matchByte == currentByte) { int shortRepPrice = repMatchPrice + getRepLen1Price(_state, posState); if (shortRepPrice < _optimum[1].Price) { _optimum[1].Price = shortRepPrice; _optimum[1].makeAsShortRep(); } } int lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]); if (lenEnd < 2) { backRes = _optimum[1].BackPrev; return 1; } _optimum[1].PosPrev = 0; _optimum[0].Backs0 = reps[0]; _optimum[0].Backs1 = reps[1]; _optimum[0].Backs2 = reps[2]; _optimum[0].Backs3 = reps[3]; int len = lenEnd; do { _optimum[len--].Price = kIfinityPrice; } while (len >= 2); for (i = 0; i < Base.kNumRepDistances; i++) { int repLen = repLens[i]; if (repLen < 2) { continue; } int price = repMatchPrice + getPureRepPrice(i, _state, posState); do { int curAndLenPrice = price + _repMatchLenEncoder.getPrice(repLen - 2, posState); Optimal optimum = _optimum[repLen]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = i; optimum.Prev1IsChar = false; } } while (--repLen >= 2); } int normalMatchPrice = matchPrice + lzma.sdk.rangecoder.Encoder.getPrice0(_isRep[_state]); len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); if (len <= lenMain) { int offs = 0; while (len > _matchDistances[offs]) { offs += 2; } for (; ; len++) { int distance = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice(distance, len, posState); Optimal optimum = _optimum[len]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = 0; optimum.BackPrev = distance + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if (len == _matchDistances[offs]) { offs += 2; if (offs == numDistancePairs) { break; } } } } int cur = 0; while (true) { cur++; if (cur == lenEnd) { return backward(cur); } int newLen = readMatchDistances(); numDistancePairs = _numDistancePairs; if (newLen >= _numFastBytes) { _longestMatchLength = newLen; _longestMatchWasFound = true; return backward(cur); } position++; int posPrev = _optimum[cur].PosPrev; int state; if (_optimum[cur].Prev1IsChar) { posPrev--; if (_optimum[cur].Prev2) { state = _optimum[_optimum[cur].PosPrev2].State; if (_optimum[cur].BackPrev2 < Base.kNumRepDistances) { state = Base.stateUpdateRep(state); } else { state = Base.stateUpdateMatch(state); } } else { state = _optimum[posPrev].State; } state = Base.stateUpdateChar(state); } else { state = _optimum[posPrev].State; } if (posPrev == cur - 1) { if (_optimum[cur].isShortRep()) { state = Base.stateUpdateShortRep(state); } else { state = Base.stateUpdateChar(state); } } else { int pos; if (_optimum[cur].Prev1IsChar && _optimum[cur].Prev2) { posPrev = _optimum[cur].PosPrev2; pos = _optimum[cur].BackPrev2; state = Base.stateUpdateRep(state); } else { pos = _optimum[cur].BackPrev; if (pos < Base.kNumRepDistances) { state = Base.stateUpdateRep(state); } else { state = Base.stateUpdateMatch(state); } } Optimal opt = _optimum[posPrev]; if (pos < Base.kNumRepDistances) { if (pos == 0) { reps[0] = opt.Backs0; reps[1] = opt.Backs1; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if (pos == 1) { reps[0] = opt.Backs1; reps[1] = opt.Backs0; reps[2] = opt.Backs2; reps[3] = opt.Backs3; } else if (pos == 2) { reps[0] = opt.Backs2; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs3; } else { reps[0] = opt.Backs3; reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } else { reps[0] = (pos - Base.kNumRepDistances); reps[1] = opt.Backs0; reps[2] = opt.Backs1; reps[3] = opt.Backs2; } } _optimum[cur].State = state; _optimum[cur].Backs0 = reps[0]; _optimum[cur].Backs1 = reps[1]; _optimum[cur].Backs2 = reps[2]; _optimum[cur].Backs3 = reps[3]; int curPrice = _optimum[cur].Price; currentByte = _matchFinder.getIndexByte(0 - 1); matchByte = _matchFinder.getIndexByte(0 - reps[0] - 1 - 1); posState = (position & _posStateMask); int curAnd1Price = curPrice + lzma.sdk.rangecoder.Encoder.getPrice0( _isMatch[(state << Base.kNumPosStatesBitsMax) + posState]) + _literalEncoder .getSubCoder(position, _matchFinder.getIndexByte(0 - 2)) .getPrice(!Base.stateIsCharState(state), matchByte, currentByte); Optimal nextOptimum = _optimum[cur + 1]; boolean nextIsChar = false; if (curAnd1Price < nextOptimum.Price) { nextOptimum.Price = curAnd1Price; nextOptimum.PosPrev = cur; nextOptimum.makeAsChar(); nextIsChar = true; } matchPrice = curPrice + lzma.sdk.rangecoder.Encoder.getPrice1( _isMatch[(state << Base.kNumPosStatesBitsMax) + posState]); repMatchPrice = matchPrice + lzma.sdk.rangecoder.Encoder.getPrice1(_isRep[state]); if (matchByte == currentByte && !(nextOptimum.PosPrev < cur && nextOptimum.BackPrev == 0)) { int shortRepPrice = repMatchPrice + getRepLen1Price(state, posState); if (shortRepPrice <= nextOptimum.Price) { nextOptimum.Price = shortRepPrice; nextOptimum.PosPrev = cur; nextOptimum.makeAsShortRep(); nextIsChar = true; } } int numAvailableBytesFull = _matchFinder.getNumAvailableBytes() + 1; numAvailableBytesFull = Math.min(kNumOpts - 1 - cur, numAvailableBytesFull); numAvailableBytes = numAvailableBytesFull; if (numAvailableBytes < 2) { continue; } if (numAvailableBytes > _numFastBytes) { numAvailableBytes = _numFastBytes; } if (!nextIsChar && matchByte != currentByte) { // try Literal + rep0 int t = Math.min(numAvailableBytesFull - 1, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(0, reps[0], t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateChar(state); int posStateNext = (position + 1) & _posStateMask; int nextRepMatchPrice = curAnd1Price + lzma.sdk.rangecoder.Encoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + lzma.sdk.rangecoder.Encoder.getPrice1(_isRep[state2]); { int offset = cur + 1 + lenTest2; while (lenEnd < offset) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); Optimal optimum = _optimum[offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = false; } } } } int startLen = 2; // speed optimization for (int repIndex = 0; repIndex < Base.kNumRepDistances; repIndex++) { int lenTest = _matchFinder.getMatchLen(0 - 1, reps[repIndex], numAvailableBytes); if (lenTest < 2) { continue; } int lenTestTemp = lenTest; do { while (lenEnd < cur + lenTest) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = repMatchPrice + getRepPrice(repIndex, lenTest, state, posState); Optimal optimum = _optimum[cur + lenTest]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = repIndex; optimum.Prev1IsChar = false; } } while (--lenTest >= 2); lenTest = lenTestTemp; if (repIndex == 0) { startLen = lenTest + 1; } // if (_maxMode) if (lenTest < numAvailableBytesFull) { int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(lenTest, reps[repIndex], t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateRep(state); int posStateNext = (position + lenTest) & _posStateMask; int curAndLenCharPrice = repMatchPrice + getRepPrice(repIndex, lenTest, state, posState) + lzma.sdk.rangecoder.Encoder.getPrice0( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + _literalEncoder .getSubCoder(position + lenTest, _matchFinder.getIndexByte(lenTest - 1 - 1)) .getPrice( true, _matchFinder.getIndexByte(lenTest - 1 - (reps[repIndex] + 1)), _matchFinder.getIndexByte(lenTest - 1)); state2 = Base.stateUpdateChar(state2); posStateNext = (position + lenTest + 1) & _posStateMask; int nextMatchPrice = curAndLenCharPrice + lzma.sdk.rangecoder.Encoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]); int nextRepMatchPrice = nextMatchPrice + lzma.sdk.rangecoder.Encoder.getPrice1(_isRep[state2]); // for(; lenTest2 >= 2; lenTest2--) { int offset = lenTest + 1 + lenTest2; while (lenEnd < cur + offset) { _optimum[++lenEnd].Price = kIfinityPrice; } int curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); Optimal optimum = _optimum[cur + offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = repIndex; } } } } } if (newLen > numAvailableBytes) { newLen = numAvailableBytes; for (numDistancePairs = 0; newLen > _matchDistances[numDistancePairs]; numDistancePairs += 2) {} _matchDistances[numDistancePairs] = newLen; numDistancePairs += 2; } if (newLen >= startLen) { normalMatchPrice = matchPrice + lzma.sdk.rangecoder.Encoder.getPrice0(_isRep[state]); while (lenEnd < cur + newLen) { _optimum[++lenEnd].Price = kIfinityPrice; } int offs = 0; while (startLen > _matchDistances[offs]) { offs += 2; } for (int lenTest = startLen; ; lenTest++) { int curBack = _matchDistances[offs + 1]; int curAndLenPrice = normalMatchPrice + getPosLenPrice(curBack, lenTest, posState); Optimal optimum = _optimum[cur + lenTest]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur; optimum.BackPrev = curBack + Base.kNumRepDistances; optimum.Prev1IsChar = false; } if (lenTest == _matchDistances[offs]) { if (lenTest < numAvailableBytesFull) { int t = Math.min(numAvailableBytesFull - 1 - lenTest, _numFastBytes); int lenTest2 = _matchFinder.getMatchLen(lenTest, curBack, t); if (lenTest2 >= 2) { int state2 = Base.stateUpdateMatch(state); int posStateNext = (position + lenTest) & _posStateMask; int curAndLenCharPrice = curAndLenPrice + lzma.sdk.rangecoder.Encoder.getPrice0( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]) + _literalEncoder .getSubCoder( position + lenTest, _matchFinder.getIndexByte(lenTest - 1 - 1)) .getPrice( true, _matchFinder.getIndexByte(lenTest - (curBack + 1) - 1), _matchFinder.getIndexByte(lenTest - 1)); state2 = Base.stateUpdateChar(state2); posStateNext = (position + lenTest + 1) & _posStateMask; int nextMatchPrice = curAndLenCharPrice + lzma.sdk.rangecoder.Encoder.getPrice1( _isMatch[(state2 << Base.kNumPosStatesBitsMax) + posStateNext]); int nextRepMatchPrice = nextMatchPrice + lzma.sdk.rangecoder.Encoder.getPrice1(_isRep[state2]); int offset = lenTest + 1 + lenTest2; while (lenEnd < cur + offset) { _optimum[++lenEnd].Price = kIfinityPrice; } curAndLenPrice = nextRepMatchPrice + getRepPrice(0, lenTest2, state2, posStateNext); optimum = _optimum[cur + offset]; if (curAndLenPrice < optimum.Price) { optimum.Price = curAndLenPrice; optimum.PosPrev = cur + lenTest + 1; optimum.BackPrev = 0; optimum.Prev1IsChar = true; optimum.Prev2 = true; optimum.PosPrev2 = cur; optimum.BackPrev2 = curBack + Base.kNumRepDistances; } } } offs += 2; if (offs == numDistancePairs) { break; } } } } } }
public void codeOneBlock(long[] inSize, long[] outSize, boolean[] finished) throws IOException { inSize[0] = 0; outSize[0] = 0; finished[0] = true; if (_inStream != null) { _matchFinder.setStream(_inStream); _matchFinder.init(); _needReleaseMFStream = true; _inStream = null; } if (_finished) { return; } _finished = true; long progressPosValuePrev = nowPos64; if (nowPos64 == 0) { if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } readMatchDistances(); int posState = (int) (nowPos64) & _posStateMask; _rangeEncoder.encode(_isMatch, (_state << Base.kNumPosStatesBitsMax) + posState, 0); _state = Base.stateUpdateChar(_state); byte curByte = _matchFinder.getIndexByte(0 - _additionalOffset); _literalEncoder.getSubCoder((int) (nowPos64), _previousByte).encode(_rangeEncoder, curByte); _previousByte = curByte; _additionalOffset--; nowPos64++; } if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } while (true) { int len = getOptimum((int) nowPos64); int pos = backRes; int posState = ((int) nowPos64) & _posStateMask; int complexState = (_state << Base.kNumPosStatesBitsMax) + posState; if (len == 1 && pos == -1) { _rangeEncoder.encode(_isMatch, complexState, 0); byte curByte = _matchFinder.getIndexByte(0 - _additionalOffset); LiteralEncoder.Encoder2 subCoder = _literalEncoder.getSubCoder((int) nowPos64, _previousByte); if (!Base.stateIsCharState(_state)) { byte matchByte = _matchFinder.getIndexByte(0 - _repDistances[0] - 1 - _additionalOffset); subCoder.encodeMatched(_rangeEncoder, matchByte, curByte); } else { subCoder.encode(_rangeEncoder, curByte); } _previousByte = curByte; _state = Base.stateUpdateChar(_state); } else { _rangeEncoder.encode(_isMatch, complexState, 1); if (pos < Base.kNumRepDistances) { _rangeEncoder.encode(_isRep, _state, 1); if (pos == 0) { _rangeEncoder.encode(_isRepG0, _state, 0); if (len == 1) { _rangeEncoder.encode(_isRep0Long, complexState, 0); } else { _rangeEncoder.encode(_isRep0Long, complexState, 1); } } else { _rangeEncoder.encode(_isRepG0, _state, 1); if (pos == 1) { _rangeEncoder.encode(_isRepG1, _state, 0); } else { _rangeEncoder.encode(_isRepG1, _state, 1); _rangeEncoder.encode(_isRepG2, _state, pos - 2); } } if (len == 1) { _state = Base.stateUpdateShortRep(_state); } else { _repMatchLenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState); _state = Base.stateUpdateRep(_state); } int distance = _repDistances[pos]; if (pos != 0) { for (int i = pos; i >= 1; i--) { _repDistances[i] = _repDistances[i - 1]; } _repDistances[0] = distance; } } else { _rangeEncoder.encode(_isRep, _state, 0); _state = Base.stateUpdateMatch(_state); _lenEncoder.encode(_rangeEncoder, len - Base.kMatchMinLen, posState); pos -= Base.kNumRepDistances; int posSlot = getPosSlot(pos); int lenToPosState = Base.getLenToPosState(len); _posSlotEncoder[lenToPosState].encode(_rangeEncoder, posSlot); if (posSlot >= Base.kStartPosModelIndex) { int footerBits = (posSlot >> 1) - 1; int baseVal = ((2 | (posSlot & 1)) << footerBits); int posReduced = pos - baseVal; if (posSlot < Base.kEndPosModelIndex) { BitTreeEncoder.reverseEncode( _posEncoders, baseVal - posSlot - 1, _rangeEncoder, footerBits, posReduced); } else { _rangeEncoder.encodeDirectBits( posReduced >> Base.kNumAlignBits, footerBits - Base.kNumAlignBits); _posAlignEncoder.reverseEncode(_rangeEncoder, posReduced & Base.kAlignMask); _alignPriceCount++; } } int distance = pos; for (int i = Base.kNumRepDistances - 1; i >= 1; i--) { _repDistances[i] = _repDistances[i - 1]; } _repDistances[0] = distance; _matchPriceCount++; } _previousByte = _matchFinder.getIndexByte(len - 1 - _additionalOffset); } _additionalOffset -= len; nowPos64 += len; if (_additionalOffset == 0) { // if (!_fastMode) if (_matchPriceCount >= (1 << 7)) { fillDistancesPrices(); } if (_alignPriceCount >= Base.kAlignTableSize) { fillAlignPrices(); } inSize[0] = nowPos64; outSize[0] = _rangeEncoder.getProcessedSizeAdd(); if (_matchFinder.getNumAvailableBytes() == 0) { flush((int) nowPos64); return; } if (nowPos64 - progressPosValuePrev >= (1 << 12)) { _finished = false; finished[0] = false; return; } } } }