Exemple #1
0
  /**
   * Verifies that the current state of the local variables array matches the state specified by a
   * stack map entry.
   *
   * @param target the target encapsulating a stack map entry specifying what the current state of
   *     the local variables array should be
   * @param replaceWithTarget if true, then the current state of the local variable array is updated
   *     to reflect the state recorded in the stack map entry
   */
  public void mergeLocals(Target target, boolean replaceWithTarget) {
    Klass[] recordedTypes = target.getLocals();
    if (recordedTypes.length > localTypes.length) {
      throw codeParser.verifyError("size of recorded and derived local variable array differs");
    }

    /*
     * Check the locals
     */
    for (int i = 0; i < recordedTypes.length; i++) {
      Klass recordedType = recordedTypes[i];
      Klass derivedType = localTypes[i];
      if (!recordedType.isAssignableFrom(derivedType)) {
        /*
         * For some reason, the preverifier occasionally generates
         * stack map entries for local variables even though the
         * local variable is dead. What's more, in these cases,
         * it determines that the type resulting from merging an
         * object type and an interface type is the interface
         * type. This makes no sense to me, but the case must be
         * allowed.
         */
        if (!recordedType.isInterface() || derivedType.isPrimitive()) {
          throw codeParser.verifyError("invalid type in local variable");
        }
      }
      if (replaceWithTarget) {
        localTypes[i] = recordedType;
      }
    }
  }
Exemple #2
0
 /**
  * Gets the super class of this class.
  *
  * @return the super class of this class
  */
 public final ProxyType getSuperclass() throws IOException, SDWPException {
   Klass superClass = klass.getSuperclass();
   // the "-bytecode-" class actually inherits from INT, but don't tell jdwp that!
   if (superClass != null && !superClass.isPrimitive()) {
     return ptm.lookup(superClass, true);
   }
   return null;
 }
Exemple #3
0
  /**
   * Pops a value off the operand stack.
   *
   * @param type the type that the value popped off the operand stack must be assignable to
   * @return the instruction that produced the popped value
   */
  public StackProducer pop(Klass type) {
    StackProducer producer;
    if (type.isDoubleWord()) {
      if (sp < 2) {
        throw codeParser.verifyError("operand stack underflow");
      }
      if (!isTopDoubleWord()) {
        throw codeParser.verifyError("incompatible type on operand stack " + tosKlassName());
      }
      sp -= 2;
      producer = stack[sp];
    } else {
      if (sp < 1) {
        throw codeParser.verifyError("operand stack underflow");
      }
      if (isTopDoubleWord()) {
        throw codeParser.verifyError("incompatible type on operand stack " + tosKlassName());
      }
      producer = stack[--sp];

      /*
       * The primitive one-word, non-float types are all assignment compatible with each other
       */
      if (type.isPrimitive() && type != Klass.FLOAT) {

        type = Klass.INT;
      }
    }

    Assert.that(producer != null);

    /*
     * Interfaces are treated as java.lang.Object in the verifier.
     */
    if (type.isInterface()) {
      type = Klass.OBJECT;
    }

    /*
     * Verify that the instruction is producing the correct type.
     */
    if (!type.isAssignableFrom(producer.getType())) {
      throw codeParser.verifyError(
          "incompatible type: '" + type + "' is not assignable from '" + producer.getType() + "'");
    }

    return producer;
  }