public void testGrowReplaceShrink() {
    Random r = new Random();
    int k = 10000;
    String s = "A";
    double t = 0;
    FibonacciHeap<String> h = new FibonacciHeap<>();
    for (int i = 0; i < (k * 3); ++i) {
      // during first two-thirds, insert
      if (i < (k * 2)) {
        double d = r.nextDouble();
        t += d;
        FibonacciHeapNode<String> n = new FibonacciHeapNode<>(s);
        h.insert(n, d);
      }

      // during last two-thirds, delete (so during middle
      // third, we'll do both insert and delete, interleaved)
      if (i >= k) {
        FibonacciHeapNode<String> n2 = h.removeMin();
        t -= n2.getKey();
      }
    }
    assertTrue(h.isEmpty());

    // tally should come back down to zero, or thereabouts (due to roundoff)
    assertEquals(0.0, t, 0.00001);
  }
 // in honor of sf.net bug #1845376
 public void testAddRemoveOne() {
   String s = "A";
   FibonacciHeapNode<String> n = new FibonacciHeapNode<>(s);
   FibonacciHeap<String> h = new FibonacciHeap<>();
   assertTrue(h.isEmpty());
   h.insert(n, 1.0);
   assertFalse(h.isEmpty());
   FibonacciHeapNode<String> n2 = h.removeMin();
   assertEquals(s, n2.getData());
   assertTrue(h.isEmpty());
 }
Exemple #3
0
  /**
   * routing using A* algorithm with fibonacci heap basically same as routingAStar function
   *
   * @param startNode
   * @param endNode
   * @param startTime
   * @param pathNodeList return path
   * @return
   */
  public static double routingAStarFibonacci(
      long startNode, long endNode, int startTime, int dayIndex, ArrayList<Long> pathNodeList) {
    System.out.println("start finding the path...");
    int debug = 0;
    double totalCost = -1;
    try {
      // test store transversal nodes
      // HashSet<Long> transversalSet = new HashSet<Long>();

      if (!OSMData.nodeHashMap.containsKey(startNode)
          || !OSMData.nodeHashMap.containsKey(endNode)) {
        System.err.println("cannot find start or end node!");
        return -1;
      }

      if (startNode == endNode) {
        System.out.println("start node is the same as end node.");
        return 0;
      }

      HashSet<Long> closedSet = new HashSet<Long>();
      HashMap<Long, FibonacciHeapNode<NodeInfoHelper>> nodeHelperCache =
          new HashMap<Long, FibonacciHeapNode<NodeInfoHelper>>();

      FibonacciHeap<NodeInfoHelper> openSet = initialStartSet(startNode, endNode, nodeHelperCache);
      HashSet<Long> endSet = initialEndSet(endNode);
      NodeInfoHelper current = null;
      FibonacciHeapNode<NodeInfoHelper> fCurrent = null;

      while (!openSet.isEmpty()) {
        // remove current from openset
        fCurrent = openSet.min();
        openSet.removeMin();
        current = fCurrent.getData();

        // if(!transversalSet.contains(current.getNodeId()))
        //	transversalSet.add(current.getNodeId());

        long nodeId = current.getNodeId();
        // add current to closedset
        closedSet.add(nodeId);
        if (endSet.contains(nodeId)) { // find the destination
          current = current.getEndNodeHelper(endNode);
          totalCost = current.getCost();
          break;
        }
        // for time dependent routing
        int timeIndex =
            startTime
                + (int)
                    (current.getCost() / OSMParam.SECOND_PER_MINUTE / OSMRouteParam.TIME_INTERVAL);
        if (timeIndex
            > OSMRouteParam.TIME_RANGE
                - 1) // time [6am - 9 pm], we regard times after 9pm as constant edge weights
        timeIndex = OSMRouteParam.TIME_RANGE - 1;
        LinkedList<ToNodeInfo> adjNodeList = OSMData.adjListHashMap.get(nodeId);
        if (adjNodeList == null) continue; // this node cannot go anywhere
        double arriveTime = current.getCost();
        // for each neighbor in neighbor_nodes(current)
        for (ToNodeInfo toNode : adjNodeList) {
          debug++;
          long toNodeId = toNode.getNodeId();
          int travelTime;
          if (toNode.isFix()) // fix time
          travelTime = toNode.getTravelTime();
          else // fetch from time array
          travelTime = toNode.getSpecificTravelTime(dayIndex, timeIndex);
          // tentative_g_score := g_score[current] + dist_between(current,neighbor)
          double costTime = arriveTime + (double) travelTime / OSMParam.MILLI_PER_SECOND;
          // tentative_f_score := tentative_g_score + heuristic_cost_estimate(neighbor, goal)
          double heuristicTime = estimateHeuristic(toNodeId, endNode);
          double totalCostTime = costTime + heuristicTime;
          // if neighbor in closedset and tentative_f_score >= f_score[neighbor]
          if (closedSet.contains(toNodeId)
              && nodeHelperCache.get(toNodeId).getData().getTotalCost() <= totalCostTime) {
            continue;
          }
          NodeInfoHelper node = null;
          FibonacciHeapNode<NodeInfoHelper> fNode = null;
          // if neighbor not in openset or tentative_f_score < f_score[neighbor]
          if (!nodeHelperCache.containsKey(toNodeId)) { // neighbor not in openset
            // create new one
            node = new NodeInfoHelper(toNodeId);
            node.setCost(costTime);
            node.setHeuristic(heuristicTime);
            node.setParentId(nodeId);
            fNode = new FibonacciHeapNode<NodeInfoHelper>(node);
            openSet.insert(fNode, node.getTotalCost());
            nodeHelperCache.put(node.getNodeId(), fNode);
          } else if (nodeHelperCache.get(toNodeId).getData().getTotalCost()
              > totalCostTime) { // neighbor in openset
            fNode = nodeHelperCache.get(toNodeId);
            node = fNode.getData();
            // update information
            node.setCost(costTime);
            node.setHeuristic(heuristicTime);
            node.setParentId(nodeId);
            if (closedSet.contains(toNodeId)) { // neighbor in closeset
              closedSet.remove(toNodeId); // remove neighbor form colseset
              openSet.insert(fNode, node.getTotalCost());
            } else { // neighbor in openset, decreaseKey
              openSet.decreaseKey(fNode, node.getTotalCost());
            }
          }
        }
      }
      if (totalCost != -1) {
        long traceNodeId = current.getNodeId();
        pathNodeList.add(traceNodeId); // add end node
        traceNodeId = current.getParentId();
        while (traceNodeId != 0) {
          pathNodeList.add(traceNodeId); // add node
          fCurrent = nodeHelperCache.get(traceNodeId);
          current = fCurrent.getData();
          traceNodeId = current.getParentId();
        }
        Collections.reverse(pathNodeList); // reverse the path list
        System.out.println("find the path successful!");
      } else {
        System.out.println("can not find the path!");
      }
      // OSMOutput.generateTransversalNodeKML(transversalSet, nodeHashMap);
    } catch (Exception e) {
      e.printStackTrace();
      System.err.println(
          "tdsp: debug code " + debug + ", start node " + startNode + ", end node " + endNode);
    }
    return totalCost;
  }
  private void runPrimsMST(int heapSizeCapacity, LinkedList<Float>[] forrest, int treeCount) {
    LinkedList<Float>[] tempMST = new LinkedList[treeCount];
    for (int i = 0; i < treeCount; i++) {
      tempMST[i] = new LinkedList<>();
    }

    int[] treeLabel = new int[treeCount];
    for (int i = 0; i < treeCount; i++) {
      treeLabel[i] = -1;
    }

    for (int i = 0; i < treeCount; i++) {
      if (tempMST[i].size() == 0) {
        try {
          treeLabel[i] = i;

          FibonacciHeap heap = new FibonacciHeap(heapSizeCapacity);
          boolean isJoinedToOther = false;

          for (Iterator iter = forrest[i].listIterator(); iter.hasNext(); ) {
            int val1 = (int) ((float) iter.next());
            float val2 = (float) iter.next();
            int val3 = (int) ((float) iter.next());
            int val4 = (int) ((float) iter.next());

            FBHeapNode node = new FBHeapNode();
            node.forrestNode1 = i;
            node.forrestNode2 = val1;
            node.value = val2;
            node.graphNode1 = val3;
            node.graphNode2 = val4;
            node.degree = 0;

            node.childHead = node.childTail = null;
            node.next = node.previous = null;
            node.parent = null;

            heap.insert(node, node, node, 1);
          }

          while (heap.getSize() > 0) {
            FBHeapNode node = heap.min();
            heap.removeMin();

            int temp = 0;
            if (node.forrestNode1 != i && tempMST[node.forrestNode1].size() == 0) {
              temp = node.forrestNode1;
            } else if (node.forrestNode2 != i && tempMST[node.forrestNode2].size() == 0) {
              temp = node.forrestNode2;
            } else if (treeLabel[node.forrestNode1] != i) {
              if (!isJoinedToOther) {
                temp = node.forrestNode1;
                isJoinedToOther = true;
              } else {
                heap.destroyHeap();
                throw new Exception();
              }
            } else if (treeLabel[node.forrestNode2] != i) {
              if (!isJoinedToOther) {
                temp = node.forrestNode1;
                isJoinedToOther = true;
              } else {
                heap.destroyHeap();
                throw new Exception();
              }
            } else {
              continue;
            }

            tempMST[node.forrestNode1].add((float) node.forrestNode2);
            tempMST[node.forrestNode2].add((float) node.forrestNode1);

            treeLabel[node.forrestNode1] = i;
            treeLabel[node.forrestNode2] = i;

            this.MST[node.graphNode1].add((float) node.graphNode2);
            this.MST[node.graphNode1].add(node.value);

            this.MST[node.graphNode2].add((float) node.graphNode1);
            this.MST[node.graphNode2].add((float) node.value);

            for (Iterator iter = forrest[temp].listIterator(); iter.hasNext(); ) {
              int val1 = (int) ((float) iter.next());
              float val2 = (float) iter.next();
              int val3 = (int) ((float) iter.next());
              int val4 = (int) ((float) iter.next());

              if (tempMST[val1].size() != 0 && treeLabel[val1] == i) {
              } else {
                FBHeapNode node2 = new FBHeapNode();
                node2.degree = 0;
                node2.forrestNode1 = temp;
                node2.forrestNode2 = val1;
                node2.value = val2;
                node2.graphNode1 = val3;
                node2.graphNode2 = val4;

                node2.childHead = node2.childTail = null;
                node2.next = node2.previous = null;
                node2.parent = null;

                heap.insert(node2, node2, node2, 1);
              }
            }
          }
        } catch (Exception e) {
          continue;
        }
      }
    }
  }