// Compute a compressed double buffer private Chunk chunkD() { HashMap<Long, Byte> hs = new HashMap<>(CUDChunk.MAX_UNIQUES); Byte dummy = 0; final byte[] bs = MemoryManager.malloc1(_len * 8, true); int j = 0; boolean fitsInUnique = true; for (int i = 0; i < _len; ++i) { double d = 0; if (_id == null || _id.length == 0 || (j < _id.length && _id[j] == i)) { d = _ds != null ? _ds[j] : (isNA2(j) || isCategorical(j)) ? Double.NaN : _ls[j] * PrettyPrint.pow10(_xs[j]); ++j; } if (fitsInUnique) { if (hs.size() < CUDChunk.MAX_UNIQUES) // still got space hs.put( Double.doubleToLongBits(d), dummy); // store doubles as longs to avoid NaN comparison issues during extraction else fitsInUnique = (hs.size() == CUDChunk.MAX_UNIQUES) && // full, but might not need more space because of repeats hs.containsKey(Double.doubleToLongBits(d)); } UnsafeUtils.set8d(bs, 8 * i, d); } assert j == sparseLen() : "j = " + j + ", _len = " + sparseLen(); if (fitsInUnique && CUDChunk.computeByteSize(hs.size(), len()) < 0.8 * bs.length) return new CUDChunk(bs, hs, len()); else return new C8DChunk(bs); }
// Compute a sparse float buffer private byte[] bufD(final int valsz) { int log = 0; while ((1 << log) < valsz) ++log; assert (1 << log) == valsz; final int ridsz = _len >= 65535 ? 4 : 2; final int elmsz = ridsz + valsz; int off = CXDChunk._OFF; byte[] buf = MemoryManager.malloc1(off + sparseLen() * elmsz, true); for (int i = 0; i < sparseLen(); i++, off += elmsz) { if (ridsz == 2) UnsafeUtils.set2(buf, off, (short) _id[i]); else UnsafeUtils.set4(buf, off, _id[i]); final double dval = _ds == null ? isNA2(i) ? Double.NaN : _ls[i] * PrettyPrint.pow10(_xs[i]) : _ds[i]; switch (valsz) { case 4: UnsafeUtils.set4f(buf, off + ridsz, (float) dval); break; case 8: UnsafeUtils.set8d(buf, off + ridsz, dval); break; default: throw H2O.fail(); } } assert off == buf.length; return buf; }
protected void switch_to_doubles() { assert _ds == null; double[] ds = MemoryManager.malloc8d(sparseLen()); for (int i = 0; i < sparseLen(); ++i) if (isNA2(i) || isCategorical2(i)) ds[i] = Double.NaN; else ds[i] = _ls[i] * PrettyPrint.pow10(_xs[i]); _ls = null; _xs = null; _ds = ds; }
public void addNum(long val, int exp) { if (isUUID() || isString()) addNA(); else if (_ds != null) { assert _ls == null; addNum(val * PrettyPrint.pow10(exp)); } else { if (val == 0) exp = 0; // Canonicalize zero long t; // Remove extra scaling while (exp < 0 && exp > -9999999 && (t = val / 10) * 10 == val) { val = t; exp++; } append2(val, exp); } }
private Chunk compress2() { // Check for basic mode info: all missing or all strings or mixed stuff byte mode = type(); if (mode == Vec.T_BAD) // ALL NAs, nothing to do return new C0DChunk(Double.NaN, sparseLen()); if (mode == Vec.T_STR) return new CStrChunk(_sslen, _ss, sparseLen(), _len, _is, _isAllASCII); boolean rerun = false; if (mode == Vec.T_CAT) { for (int i = 0; i < sparseLen(); i++) if (isCategorical2(i)) _xs[i] = 0; else if (!isNA2(i)) { setNA_impl2(i); ++_naCnt; } // Smack any mismatched string/numbers } else if (mode == Vec.T_NUM) { for (int i = 0; i < sparseLen(); i++) if (isCategorical2(i)) { setNA_impl2(i); rerun = true; } } if (rerun) { _naCnt = -1; type(); } // Re-run rollups after dropping all numbers/categoricals boolean sparse = false; // sparse? treat as sparse iff we have at least MIN_SPARSE_RATIOx more zeros than nonzeros if (_sparseRatio * (_naCnt + _nzCnt) < _len) { set_sparse(_naCnt + _nzCnt); sparse = true; } else if (sparseLen() != _len) cancel_sparse(); // If the data is UUIDs there's not much compression going on if (_ds != null && _ls != null) return chunkUUID(); // cut out the easy all NaNs case if (_naCnt == _len) return new C0DChunk(Double.NaN, _len); // If the data was set8 as doubles, we do a quick check to see if it's // plain longs. If not, we give up and use doubles. if (_ds != null) { int i; // check if we can flip to ints for (i = 0; i < sparseLen(); ++i) if (!Double.isNaN(_ds[i]) && (double) (long) _ds[i] != _ds[i]) break; boolean isInteger = i == sparseLen(); boolean isConstant = !sparse || sparseLen() == 0; double constVal = 0; if (!sparse) { // check the values, sparse with some nonzeros can not be constant - has 0s and // (at least 1) nonzero constVal = _ds[0]; for (int j = 1; j < _len; ++j) if (_ds[j] != constVal) { isConstant = false; break; } } if (isConstant) return isInteger ? new C0LChunk((long) constVal, _len) : new C0DChunk(constVal, _len); if (!isInteger) return sparse ? new CXDChunk(_len, sparseLen(), 8, bufD(8)) : chunkD(); // Else flip to longs _ls = new long[_ds.length]; _xs = new int[_ds.length]; double[] ds = _ds; _ds = null; final int naCnt = _naCnt; for (i = 0; i < sparseLen(); i++) // Inject all doubles into longs if (Double.isNaN(ds[i])) setNA_impl2(i); else _ls[i] = (long) ds[i]; // setNA_impl2 will set _naCnt to -1! // we already know what the naCnt is (it did not change!) so set it back to correct value _naCnt = naCnt; } // IF (_len > _sparseLen) THEN Sparse // Check for compressed *during appends*. Here we know: // - No specials; _xs[]==0. // - No floats; _ds==null // - NZ length in _sparseLen, actual length in _len. // - Huge ratio between _len and _sparseLen, and we do NOT want to inflate to // the larger size; we need to keep it all small all the time. // - Rows in _xs // Data in some fixed-point format, not doubles // See if we can sanely normalize all the data to the same fixed-point. int xmin = Integer.MAX_VALUE; // min exponent found boolean floatOverflow = false; double min = Double.POSITIVE_INFINITY; double max = Double.NEGATIVE_INFINITY; int p10iLength = PrettyPrint.powers10i.length; long llo = Long.MAX_VALUE, lhi = Long.MIN_VALUE; int xlo = Integer.MAX_VALUE, xhi = Integer.MIN_VALUE; for (int i = 0; i < sparseLen(); i++) { if (isNA2(i)) continue; long l = _ls[i]; int x = _xs[i]; assert x != Integer.MIN_VALUE : "l = " + l + ", x = " + x; if (x == Integer.MIN_VALUE + 1) x = 0; // Replace categorical flag with no scaling assert l != 0 || x == 0 : "l == 0 while x = " + x + " ls = " + Arrays.toString(_ls); // Exponent of zero is always zero long t; // Remove extra scaling while (l != 0 && (t = l / 10) * 10 == l) { l = t; x++; } // Compute per-chunk min/max double d = l * PrettyPrint.pow10(x); if (d < min) { min = d; llo = l; xlo = x; } if (d > max) { max = d; lhi = l; xhi = x; } floatOverflow = l < Integer.MIN_VALUE + 1 || l > Integer.MAX_VALUE; xmin = Math.min(xmin, x); } if (sparse) { // sparse? then compare vs implied 0s if (min > 0) { min = 0; llo = 0; xlo = 0; } if (max < 0) { max = 0; lhi = 0; xhi = 0; } xmin = Math.min(xmin, 0); } // Constant column? if (_naCnt == 0 && (min == max)) { if (llo == lhi && xlo == 0 && xhi == 0) return new C0LChunk(llo, _len); else if ((long) min == min) return new C0LChunk((long) min, _len); else return new C0DChunk(min, _len); } // Compute min & max, as scaled integers in the xmin scale. // Check for overflow along the way boolean overflow = ((xhi - xmin) >= p10iLength) || ((xlo - xmin) >= p10iLength); long lemax = 0, lemin = 0; if (!overflow) { // Can at least get the power-of-10 without overflow long pow10 = PrettyPrint.pow10i(xhi - xmin); lemax = lhi * pow10; // Hacker's Delight, Section 2-13, checking overflow. // Note that the power-10 is always positive, so the test devolves this: if ((lemax / pow10) != lhi) overflow = true; // Note that xlo might be > xmin; e.g. { 101e-49 , 1e-48}. long pow10lo = PrettyPrint.pow10i(xlo - xmin); lemin = llo * pow10lo; if ((lemin / pow10lo) != llo) overflow = true; } // Boolean column? if (max == 1 && min == 0 && xmin == 0 && !overflow) { if (sparse) { // Very sparse? return _naCnt == 0 ? new CX0Chunk(_len, sparseLen(), bufS(0)) // No NAs, can store as sparse bitvector : new CXIChunk(_len, sparseLen(), 1, bufS(1)); // have NAs, store as sparse 1byte values } int bpv = _catCnt + _naCnt > 0 ? 2 : 1; // Bit-vector byte[] cbuf = bufB(bpv); return new CBSChunk(cbuf, cbuf[0], cbuf[1]); } final boolean fpoint = xmin < 0 || min < Long.MIN_VALUE || max > Long.MAX_VALUE; if (sparse) { if (fpoint) return new CXDChunk(_len, sparseLen(), 8, bufD(8)); int sz = 8; if (Short.MIN_VALUE <= min && max <= Short.MAX_VALUE) sz = 2; else if (Integer.MIN_VALUE <= min && max <= Integer.MAX_VALUE) sz = 4; return new CXIChunk(_len, sparseLen(), sz, bufS(sz)); } // Exponent scaling: replacing numbers like 1.3 with 13e-1. '13' fits in a // byte and we scale the column by 0.1. A set of numbers like // {1.2,23,0.34} then is normalized to always be represented with 2 digits // to the right: {1.20,23.00,0.34} and we scale by 100: {120,2300,34}. // This set fits in a 2-byte short. // We use exponent-scaling for bytes & shorts only; it's uncommon (and not // worth it) for larger numbers. We need to get the exponents to be // uniform, so we scale up the largest lmax by the largest scale we need // and if that fits in a byte/short - then it's worth compressing. Other // wise we just flip to a float or double representation. if (overflow || (fpoint && floatOverflow) || -35 > xmin || xmin > 35) return chunkD(); final long leRange = leRange(lemin, lemax); if (fpoint) { if ((int) lemin == lemin && (int) lemax == lemax) { if (leRange < 255) // Fits in scaled biased byte? return new C1SChunk(bufX(lemin, xmin, C1SChunk._OFF, 0), lemin, PrettyPrint.pow10(xmin)); if (leRange < 65535) { // we use signed 2B short, add -32k to the bias! long bias = 32767 + lemin; return new C2SChunk(bufX(bias, xmin, C2SChunk._OFF, 1), bias, PrettyPrint.pow10(xmin)); } } if (leRange < 4294967295l) { long bias = 2147483647l + lemin; return new C4SChunk(bufX(bias, xmin, C4SChunk._OFF, 2), bias, PrettyPrint.pow10(xmin)); } return chunkD(); } // else an integer column // Compress column into a byte if (xmin == 0 && 0 <= lemin && lemax <= 255 && ((_naCnt + _catCnt) == 0)) return new C1NChunk(bufX(0, 0, C1NChunk._OFF, 0)); if (lemin < Integer.MIN_VALUE) return new C8Chunk(bufX(0, 0, 0, 3)); if (leRange < 255) { // Span fits in a byte? if (0 <= min && max < 255) // Span fits in an unbiased byte? return new C1Chunk(bufX(0, 0, C1Chunk._OFF, 0)); return new C1SChunk(bufX(lemin, xmin, C1SChunk._OFF, 0), lemin, PrettyPrint.pow10i(xmin)); } // Compress column into a short if (leRange < 65535) { // Span fits in a biased short? if (xmin == 0 && Short.MIN_VALUE < lemin && lemax <= Short.MAX_VALUE) // Span fits in an unbiased short? return new C2Chunk(bufX(0, 0, C2Chunk._OFF, 1)); long bias = (lemin - (Short.MIN_VALUE + 1)); return new C2SChunk(bufX(bias, xmin, C2SChunk._OFF, 1), bias, PrettyPrint.pow10i(xmin)); } // Compress column into ints if (Integer.MIN_VALUE < min && max <= Integer.MAX_VALUE) return new C4Chunk(bufX(0, 0, 0, 2)); return new C8Chunk(bufX(0, 0, 0, 3)); }