private FlatField changeRangeType(FlatField image, RealType newRangeType) throws VisADException, RemoteException { FunctionType ftype = (FunctionType) image.getType(); FlatField new_image = new FlatField(new FunctionType(ftype.getDomain(), newRangeType), image.getDomainSet()); new_image.setSamples(image.getFloats(false), false); return new_image; }
void setupServerData(LocalDisplay[] dpys) throws RemoteException, VisADException { Unit super_degree = CommonUnit.degree.scale(2.5); RealType lon = RealType.getRealType("lon", super_degree); DataReference ref = loadFile(); if (ref == null) { System.err.println("must specify netCDF file name"); System.exit(1); return; } FieldImpl netcdf_data = (FieldImpl) ref.getData(); // compute ScalarMaps from type components FunctionType ftype = (FunctionType) netcdf_data.getType(); RealTupleType dtype = ftype.getDomain(); MathType rntype = ftype.getRange(); int n = dtype.getDimension(); dpys[0].addMap(new ScalarMap((RealType) dtype.getComponent(0), Display.XAxis)); if (n > 1) { dpys[0].addMap(new ScalarMap((RealType) dtype.getComponent(1), Display.YAxis)); } if (n > 2) { dpys[0].addMap(new ScalarMap((RealType) dtype.getComponent(2), Display.ZAxis)); } if (rntype instanceof RealType) { dpys[0].addMap(new ScalarMap((RealType) rntype, Display.Green)); if (n <= 2) { dpys[0].addMap(new ScalarMap((RealType) rntype, Display.ZAxis)); } } else if (rntype instanceof RealTupleType) { int m = ((RealTupleType) rntype).getDimension(); RealType rr = (RealType) ((RealTupleType) rntype).getComponent(0); dpys[0].addMap(new ScalarMap(rr, Display.Green)); if (n <= 2) { if (m > 1) { rr = (RealType) ((RealTupleType) rntype).getComponent(1); } dpys[0].addMap(new ScalarMap(rr, Display.ZAxis)); } } dpys[0].addMap(new ConstantMap(0.5, Display.Red)); dpys[0].addMap(new ConstantMap(0.0, Display.Blue)); dpys[0].addReference(ref, null); System.out.println("now saving data as 'save.nc' and re-reading"); Plain plain = new Plain(); try { plain.save("save.nc", netcdf_data, true); netcdf_data = (FieldImpl) plain.open("save.nc"); } catch (IOException e) { System.err.println("Couldn't open \"save.nc\": " + e.getMessage()); System.exit(1); return; } }
/** * Sets the input, buoyancy profile. * * @param buoyProfile The input, buoyancy profile. * @throws TypeException if the domain quantity isn't pressure or the range quantity isn't volume * per mass. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. */ public void setBuoyancyProfile(Field buoyProfile) throws TypeException, VisADException, RemoteException { FunctionType funcType = (FunctionType) buoyProfile.getType(); RealTupleType domainType = funcType.getDomain(); if (!Pressure.getRealType().equalsExceptNameButUnits(domainType)) { throw new TypeException(domainType.toString()); } MathType rangeType = funcType.getRange(); if (!CapeBean.massicVolume.equalsExceptNameButUnits(rangeType)) { throw new TypeException(rangeType.toString()); } this.buoyProfile = buoyProfile; }
/** create parallel coordinates display for data */ public static void parallel(DisplayImpl display, FlatField data) throws VisADException, RemoteException { FunctionType ftype = (FunctionType) data.getType(); RealType index = (RealType) ftype.getDomain().getComponent(0); RealTupleType range = (RealTupleType) ftype.getRange(); int ncoords = range.getDimension(); int nrows = data.getLength(); Set index_set = data.getDomainSet(); float[][] samples = data.getFloats(false); RealType x = RealType.getRealType("coordinate"); RealType y = RealType.getRealType("value"); SetType xy = new SetType(new RealTupleType(x, y)); FunctionType ptype = new FunctionType(index, xy); FieldImpl pfield = new FieldImpl(ptype, index_set); for (int j = 0; j < nrows; j++) { float[][] locs = new float[2][ncoords]; for (int i = 0; i < ncoords; i++) { locs[0][i] = i; locs[1][i] = samples[i][j]; } Gridded2DSet set = new Gridded2DSet(xy, locs, ncoords); pfield.setSample(j, set, false); } // create a DataReference for river system DataReference parallel_ref = new DataReferenceImpl("parallel"); parallel_ref.setData(pfield); display.addMap(new ScalarMap(x, Display.XAxis)); display.addMap(new ScalarMap(y, Display.YAxis)); // enable axis scales display.getGraphicsModeControl().setScaleEnable(true); // link display to parallel display display.addReference(parallel_ref); }
/** * Converts grid-relative wind to true (or absolute) wind. The U and V components of true wind are * {@link WesterlyWind} and {@link SoutherlyWind}, respectively. The domain of the input {@link * visad.FlatField} must have a manifold dimension of two or greater and it must have a reference * system which contains {@link visad.RealType#Latitude} and {@link visad.RealType#Longitude}. The * number of components in the range of the input {@link visad.FlatField} must be two. Both * components must have units convertible with {@link #DEFAULT_SPEED_UNIT}. The first and second * components are assumed to be the wind components in the direction of increasing first and * second manifold dimension indexes, respectively. The {@link visad.MathType} of the range of the * returned {@link visad.FlatField} will be <code>CartesianHorizontalWind.getEarthVectorType() * </code> and the domain will be the same as the input domain. * * @param rel The field of grid-relative wind. * @return The field of true wind corresponding to the input field. * @throws NullPointerException if <code>rel</code> is <code>null</code>. * @throws IllegalArgumentException if the input field doesn't have two and only two components in * its range, or if the default units of the input range aren't equal, or if the domain of the * input field doesn't have a transformation to latitude and longitude, or the grid is * irregular or has too few points. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. * @see CartesianHorizontalWind */ public static FlatField cartesianHorizontalWind(FlatField rel) throws VisADException, RemoteException { FunctionType funcType = (FunctionType) rel.getType(); MathType rangeType = funcType.getRange(); if (rel.getRangeDimension() != 2) { throw new IllegalArgumentException(rangeType.toString()); } Unit[] units = rel.getDefaultRangeUnits(); if (!units[0].equals(units[1])) { throw new IllegalArgumentException(units.toString()); } SampledSet grid = (SampledSet) rel.getDomainSet(); // check for single point grid if (grid instanceof SingletonSet) { return rel; } else if (grid instanceof GriddedSet) { int[] lengths = ((GriddedSet) grid).getLengths(); if ((lengths[0] == 1) && (lengths[1] == 1)) { return rel; } } FlatField abs = new FlatField( new FunctionType(funcType.getDomain(), CartesianHorizontalWind.getEarthVectorType()), grid, (CoordinateSystem[]) null, rel.getRangeSets(), units); abs.setSamples(trueWind(rel.getFloats(), grid), false); return abs; }
/** * Converts a time-series of grid-relative winds to a time-series of true (or absolute) winds. The * U and V components of true wind are {@link WesterlyWind} and {@link SoutherlyWind}, * respectively. The domain of the input {@link visad.Field} must be a temporal {@link * visad.Gridded1DSet} or a {@link visad.SingletonSet}. The range values of the input {@link * visad.Field} must be {@link visad.FlatField}s. The domains of the range {@link * visad.FlatField}s must have a manifold dimension of two or greater and they must have a * reference system which contains {@link visad.RealType#Latitude} and {@link * visad.RealType#Longitude}. The number of components in the range of the {@link * visad.FlatField}s must be two. Both components must have units convertible with {@link * #DEFAULT_SPEED_UNIT}. The first and second components are assumed to be the wind components in * the direction of increasing first and second manifold dimension indexes, respectively. The * domains of the {@link visad.FlatField}s must be equal. The {@link visad.Field} returned by this * method has the same domain as the input {@link visad.Field}. The range values of the returned * {@link visad.Field} are {@link visad.FlatField}s that have the same domain as the input {@link * visad.FlatField}s. The {@link visad.MathType} of the range of the returned {@link * visad.FlatField}s will be <code>CartesianHorizontalWind.getEarthVectorType()</code>. * * @param rel The time-series of grid-relative wind. * @return The time-series of true wind corresponding to the input. * @throws NullPointerException if <code>rel</code> is <code>null</code>. * @throws IllegalArgumentException if the input field doesn't have a time-series domain, or if * the range values aren't {@link visad.FlatField} with the same domain, or if the domain of * the {@link visad.FlatField}s doesn't have a transformation to latitude and longitude, or if * the domain is irregular or has too few points, or if the {@link visad.FlatField}s don't * have two and only two components in their range, or if the default units of the {@link * visad.FlatField}s range aren't equal. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. * @see CartesianHorizontalWind */ public static Field timeSeriesCartesianHorizontalWind(Field rel) throws VisADException, RemoteException { FunctionType outerFuncType = (FunctionType) rel.getType(); RealTupleType outerDomType = outerFuncType.getDomain(); if (!(RealType.Time.equalsExceptNameButUnits(outerDomType) || !RealType.TimeInterval.equalsExceptNameButUnits(outerDomType))) { throw new IllegalArgumentException(outerDomType.toString()); } MathType innerFuncType = outerFuncType.getRange(); if (!(innerFuncType instanceof FunctionType)) { throw new IllegalArgumentException(innerFuncType.toString()); } Field innerField = (Field) rel.getSample(0); Set innerDom = innerField.getDomainSet(); if (innerDom instanceof SingletonSet) { return rel; } else if (innerDom instanceof GriddedSet) { int[] lengths = ((GriddedSet) innerDom).getLengths(); if ((lengths[0] == 1) && (lengths[1] == 1)) { return rel; } } // account for null units, assume m/sec Unit[] rangeUnits = innerField.getDefaultRangeUnits(); if ((rangeUnits == null) || (rangeUnits[0] == null) || rangeUnits[0].isDimensionless()) { rangeUnits = CartesianHorizontalWind.getEarthVectorType().getDefaultUnits(); } FunctionType innerType = new FunctionType( ((SetType) innerDom.getType()).getDomain(), CartesianHorizontalWind.getEarthVectorType()); FlatField uvField = new FlatField(innerType, innerDom, (CoordinateSystem) null, (Set[]) null, rangeUnits); Field result = new FieldImpl(new FunctionType(outerDomType, uvField.getType()), rel.getDomainSet()); // System.out.println("making rHatField"); Field rHatField = (doNewCode ? hatFieldNew(innerDom, 0) : hatFieldOld(innerDom, 0)); // System.out.println("making sHatField"); Field sHatField = (doNewCode ? hatFieldNew(innerDom, 1) : hatFieldOld(innerDom, 1)); float[][] rHats = rHatField.getFloats(false); // ucar.unidata.util.Misc.printArray("rHats[0]", rHats[0]); // ucar.unidata.util.Misc.printArray("rHats[1]", rHats[1]); // System.out.println("\n"); float[][] sHats = sHatField.getFloats(false); // ucar.unidata.util.Misc.printArray("sHats[0]", sHats[0]); // ucar.unidata.util.Misc.printArray("sHats[1]", sHats[1]); // System.out.println("\n"); float[] us = new float[innerDom.getLength()]; float[] vs = new float[us.length]; for (int i = 0, n = rel.getLength(); i < n; i++) { if (i > 0) { innerField = (Field) rel.getSample(i); Set dom = innerField.getDomainSet(); if (!innerDom.equals(dom)) { // System.out.println("new domain"); innerDom = dom; rHatField = (doNewCode ? hatFieldNew(innerDom, 0) : hatFieldOld(innerDom, 0)); sHatField = (doNewCode ? hatFieldNew(innerDom, 1) : hatFieldOld(innerDom, 1)); rHats = rHatField.getFloats(false); sHats = sHatField.getFloats(false); /* throw new IllegalArgumentException("template=" + innerDom.toString() + "; domain=" + dom.toString()); */ } uvField = new FlatField(innerType, innerDom, (CoordinateSystem) null, (Set[]) null, rangeUnits); us = new float[innerDom.getLength()]; vs = new float[us.length]; } float[][] rsWinds = innerField.getFloats(false); float[] rWinds = rsWinds[0]; float[] sWinds = rsWinds[1]; // ucar.unidata.util.Misc.printArray("rWinds", rWinds); // System.out.println("\n"); // ucar.unidata.util.Misc.printArray("sWinds", sWinds); // System.out.println("\n"); for (int j = 0; j < us.length; j++) { us[j] = rWinds[j] * rHats[0][j] + sWinds[j] * sHats[0][j]; vs[j] = rWinds[j] * rHats[1][j] + sWinds[j] * sHats[1][j]; } // ucar.unidata.util.Misc.printArray("us", us); // System.out.println("\n"); // ucar.unidata.util.Misc.printArray("vs", vs); // System.out.println("\n"); uvField.setSamples(new float[][] {us, vs}, false); result.setSample(i, uvField, false); } return result; }
void setupServerData(LocalDisplay[] dpys) throws RemoteException, VisADException { DefaultFamily df = new DefaultFamily("loader"); DataReference ref1 = loadFile(df, file1, "img1"); if (ref1 == null) { System.err.println("\"" + file1 + "\" is not a valid file"); System.exit(1); return; } DataReference ref2 = loadFile(df, file2, "img2"); if (ref2 == null) { System.err.println("\"" + file2 + "\" is not a valid file"); System.exit(1); return; } FlatField img1 = (FlatField) ref1.getData(); FlatField img2 = (FlatField) ref2.getData(); /* if (!img1.getType().equals(img2.getType())) { System.err.println("Incompatible file types:"); System.err.println(" " + file1 + ": " + img1.getType()); System.err.println(" " + file2 + ": " + img2.getType()); System.exit(1); return; } */ // compute ScalarMaps from type components FunctionType ftype = (FunctionType) img1.getType(); RealTupleType dtype = ftype.getDomain(); RealTupleType rtype = (RealTupleType) ftype.getRange(); /* map domain elements to spatial axes */ final int dLen = dtype.getDimension(); for (int i = 0; i < dLen; i++) { ScalarType scalT; DisplayRealType dpyRT; switch (i) { case 0: dpyRT = Display.XAxis; break; case 1: dpyRT = Display.YAxis; break; case 2: dpyRT = Display.ZAxis; break; default: dpyRT = null; break; } if (dpyRT != null) { dpys[0].addMap(new ScalarMap((RealType) dtype.getComponent(i), dpyRT)); } } /* map range elements to colors */ final int rLen = rtype.getDimension(); for (int i = 0; i < rLen; i++) { ScalarType scalT; DisplayRealType dpyRT; switch (i) { case 0: dpyRT = Display.Red; break; case 1: dpyRT = Display.Green; break; case 2: dpyRT = Display.Blue; break; default: dpyRT = null; break; } if (dpyRT != null) { dpys[0].addMap(new ScalarMap((RealType) rtype.getComponent(i), dpyRT)); } } dpys[0].addReference(ref1, null); dpys[0].addReference(ref2, null); dpys[0].addActivityHandler(new SwitchGIFs(dpys[0])); }
/** * Computes the output Level of Free Convection (LFC) from an (AirPressure -> MassicVolume) * buoyancy profile. * * @param datums The input data in the same order as during construction: <code>datums[0] * </code> is the input buoyancy profile. * @return The pressure at the LFC of the buoyancy profile. * @throws ClassCastException if an input data reference has the wrong type of data object. * @throws TypeException if a VisAD data object has the wrong type. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. * @throws IllegalArgumentException if the profile is not ascending. */ protected Data compute(Data[] datums) throws TypeException, VisADException, RemoteException { Field buoyProfile = (Field) datums[0]; Real lfc = noData; // default return value if (buoyProfile != null) { FunctionType funcType = (FunctionType) buoyProfile.getType(); RealTupleType domainType = funcType.getDomain(); if (!Pressure.getRealType().equalsExceptNameButUnits(domainType)) { throw new TypeException(domainType.toString()); } MathType rangeType = funcType.getRange(); Util.vetType(MassicVolume.getRealType(), buoyProfile); Set domainSet = buoyProfile.getDomainSet(); double[] pressures = domainSet.getDoubles()[0]; float[] buoys = buoyProfile.getFloats()[0]; if (pressures.length > 1) { int lastI = pressures.length - 1; boolean ascending = pressures[0] >= pressures[lastI]; Unit presUnit = domainSet.getSetUnits()[0]; int i; if (ascending) { /* * For a level of free convection to exist, the lower * buoyancy must be negative. */ for (i = 0; (i < buoys.length) && (buoys[i] >= 0); i++) ; /* * To find the level of free convection, ascend to * positive buoyancy. */ while ((++i < buoys.length) && (buoys[i] <= 0)) ; if (i < buoys.length) { lfc = interpolatePres(pressures[i], buoys[i], pressures[i - 1], buoys[i - 1], presUnit); } } else { /* * For a level of free convection to exist, the lower * buoyancy must be negative. */ for (i = lastI; (i >= 0) && (buoys[i] >= 0); i--) ; /* * To find the level of free convection, ascend to * positive buoyancy. */ while ((--i >= 0) && (buoys[i] <= 0)) ; if (i >= 0) { lfc = interpolatePres(pressures[i], buoys[i], pressures[i + 1], buoys[i + 1], presUnit); } } } } return lfc; }
/** * Construct a satellite display using the specified McIDAS map file, image source. The image can * be displayed on a 3D globe or on a flat rectillinear projection. * * @param mapFile location of the McIDAS map file (path or URL) * @param imageSource location of the image source (path or URL) * @param display3D if true, use 3D display, otherwise flat rectillinear * @param remap remap the image into a domain over North America */ public SatDisplay(String mapFile, String imageSource, boolean display3D, boolean remap) { try { // Read in the map file BaseMapAdapter baseMapAdapter; if (mapFile.indexOf("://") > 0) // URL specified { baseMapAdapter = new BaseMapAdapter(new URL(mapFile)); } else // local disk file { baseMapAdapter = new BaseMapAdapter(mapFile); } // Create the display and set up the scalar maps to map // data to the display ScalarMap latMap; // latitude -> YAxis ScalarMap lonMap; // longitude -> XAxis if (display3D) { display = new DisplayImplJ3D("display"); latMap = new ScalarMap(RealType.Latitude, Display.Latitude); lonMap = new ScalarMap(RealType.Longitude, Display.Longitude); } else { display = new DisplayImplJ3D("display", new TwoDDisplayRendererJ3D()); latMap = new ScalarMap(RealType.Latitude, Display.YAxis); lonMap = new ScalarMap(RealType.Longitude, Display.XAxis); } display.addMap(latMap); display.addMap(lonMap); // set the display to a global scale latMap.setRange(-90.0, 90.0); lonMap.setRange(-180.0, 180.0); // create a reference for the map line DataReference maplinesRef = new DataReferenceImpl("MapLines"); maplinesRef.setData(baseMapAdapter.getData()); // set the attributes of the map lines (color, location) ConstantMap[] maplinesConstantMap = new ConstantMap[4]; maplinesConstantMap[0] = new ConstantMap(0., Display.Blue); maplinesConstantMap[1] = new ConstantMap(1., Display.Red); maplinesConstantMap[2] = new ConstantMap(0., Display.Green); maplinesConstantMap[3] = new ConstantMap(1.001, Display.Radius); // just above the image // read in the image AreaAdapter areaAdapter = new AreaAdapter(imageSource); FlatField image = areaAdapter.getData(); // Extract the metadata from the image FunctionType imageFunctionType = (FunctionType) image.getType(); RealTupleType imageDomainType = imageFunctionType.getDomain(); RealTupleType imageRangeType = (RealTupleType) imageFunctionType.getRange(); // remap and resample the image if (remap) { int SIZE = 256; RealTupleType latlonType = ((CoordinateSystem) imageDomainType.getCoordinateSystem()).getReference(); Linear2DSet remapDomainSet = new Linear2DSet(latlonType, -4.0, 70.0, SIZE, -150.0, 5.0, SIZE); image = (FlatField) image.resample(remapDomainSet, Data.NEAREST_NEIGHBOR, Data.NO_ERRORS); } // select which band to show... ScalarMap rgbMap = new ScalarMap((RealType) imageRangeType.getComponent(0), Display.RGB); display.addMap(rgbMap); // set the enhancement to a grey scale ColorControl colorControl = (ColorControl) rgbMap.getControl(); colorControl.initGreyWedge(); // create a data reference for the image DataReferenceImpl imageRef = new DataReferenceImpl("ImageRef"); imageRef.setData(image); // add the data references to the display display.disableAction(); drmap = new DefaultRendererJ3D(); drimage = new DefaultRendererJ3D(); drmap.toggle(false); drimage.toggle(false); display.addDisplayListener(this); display.addReferences(drmap, maplinesRef, maplinesConstantMap); display.addReferences(drimage, imageRef, null); display.enableAction(); } catch (Exception ne) { ne.printStackTrace(); System.exit(1); } }
/** * run 'java visad.bom.ImageRendererJ3D len step' to test animation behavior of ImageRendererJ3D * renders a loop of len at step ms per frame then updates loop by deleting first time and adding * a new last time */ public static void main(String args[]) throws VisADException, RemoteException, IOException { int step = 1000; int len = 3; if (args.length > 0) { try { len = Integer.parseInt(args[0]); } catch (NumberFormatException e) { len = 3; } } if (len < 1) len = 1; if (args.length > 1) { try { step = Integer.parseInt(args[1]); } catch (NumberFormatException e) { step = 1000; } } if (step < 1) step = 1; // create a netCDF reader Plain plain = new Plain(); // open a netCDF file containing an image sequence and adapt // it to a Field Data object Field raw_image_sequence = null; try { // raw_image_sequence = (Field) plain.open("images256x256.nc"); raw_image_sequence = (Field) plain.open("images.nc"); } catch (IOException exc) { String s = "To run this example, the images.nc file must be " + "present in\nthe current directory." + "You can obtain this file from:\n" + " ftp://www.ssec.wisc.edu/pub/visad-2.0/images.nc.Z"; System.out.println(s); System.exit(0); } // just take first half of raw_image_sequence FunctionType image_sequence_type = (FunctionType) raw_image_sequence.getType(); Set raw_set = raw_image_sequence.getDomainSet(); float[][] raw_times = raw_set.getSamples(); int raw_len = raw_times[0].length; if (raw_len != 4) { throw new VisADException("wrong number of images in sequence"); } float raw_span = (4.0f / 3.0f) * (raw_times[0][3] - raw_times[0][0]); double[][] times = new double[1][len]; for (int i = 0; i < len; i++) { times[0][i] = raw_times[0][i % raw_len] + raw_span * (i / raw_len); } Gridded1DDoubleSet set = new Gridded1DDoubleSet(raw_set.getType(), times, len); Field image_sequence = new FieldImpl(image_sequence_type, set); for (int i = 0; i < len; i++) { image_sequence.setSample(i, raw_image_sequence.getSample(i % raw_len)); } // create a DataReference for image sequence final DataReference image_ref = new DataReferenceImpl("image"); image_ref.setData(image_sequence); // create a Display using Java3D DisplayImpl display = new DisplayImplJ3D("image display"); // extract the type of image and use // it to determine how images are displayed FunctionType image_type = (FunctionType) image_sequence_type.getRange(); RealTupleType domain_type = image_type.getDomain(); // map image coordinates to display coordinates display.addMap(new ScalarMap((RealType) domain_type.getComponent(0), Display.XAxis)); display.addMap(new ScalarMap((RealType) domain_type.getComponent(1), Display.YAxis)); // map image brightness values to RGB (default is grey scale) display.addMap(new ScalarMap((RealType) image_type.getRange(), Display.RGB)); RealType hour_type = (RealType) image_sequence_type.getDomain().getComponent(0); ScalarMap animation_map = new ScalarMap(hour_type, Display.Animation); display.addMap(animation_map); AnimationControl animation_control = (AnimationControl) animation_map.getControl(); animation_control.setStep(step); animation_control.setOn(true); /* // link the Display to image_ref ImageRendererJ3D renderer = new ImageRendererJ3D(); display.addReferences(renderer, image_ref); // display.addReference(image_ref); */ // create JFrame (i.e., a window) for display and slider JFrame frame = new JFrame("ImageRendererJ3D test"); frame.addWindowListener( new WindowAdapter() { public void windowClosing(WindowEvent e) { System.exit(0); } }); // create JPanel in JFrame JPanel panel = new JPanel(); panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS)); panel.setAlignmentY(JPanel.TOP_ALIGNMENT); panel.setAlignmentX(JPanel.LEFT_ALIGNMENT); frame.getContentPane().add(panel); // add display to JPanel panel.add(display.getComponent()); // set size of JFrame and make it visible frame.setSize(500, 500); frame.setVisible(true); System.out.println("first animation sequence"); // link the Display to image_ref ImageRendererJ3D renderer = new ImageRendererJ3D(); display.addReferences(renderer, image_ref); // display.addReference(image_ref); // wait 4 * len seconds new Delay(len * 4000); // substitute a new image sequence for the old one for (int i = 0; i < len; i++) { times[0][i] = raw_times[0][(i + 1) % raw_len] + raw_span * ((i + 1) / raw_len); } set = new Gridded1DDoubleSet(raw_set.getType(), times, len); FieldImpl new_image_sequence = new FieldImpl(image_sequence_type, set); for (int i = 0; i < len; i++) { new_image_sequence.setSample(i, raw_image_sequence.getSample((i + 1) % raw_len)); } System.out.println("second animation sequence"); // tell renderer to resue frames in its scene graph renderer.setReUseFrames(true); image_ref.setData(new_image_sequence); }
/** * determine whether the given MathType and collection of ScalarMaps meets the criteria to use * ImageRendererJ3D. Throw a VisADException if ImageRenderer cannot be used, otherwise return * true. */ public static boolean isRendererUsable(MathType type, ScalarMap[] maps) throws VisADException { RealType time = null; RealTupleType domain = null; RealTupleType range = null; RealType x = null, y = null; RealType rx = null, ry = null; // WLH 19 July 2000 RealType r = null, g = null, b = null; RealType rgb = null; // must be a function if (!(type instanceof FunctionType)) { throw new VisADException("Not a FunctionType"); } FunctionType function = (FunctionType) type; RealTupleType functionD = function.getDomain(); MathType functionR = function.getRange(); // time function if (function.equalsExceptName(image_sequence_type) || function.equalsExceptName(image_sequence_type2) || function.equalsExceptName(image_sequence_type3)) { // strip off time RealType time = (RealType) functionD.getComponent(0); function = (FunctionType) functionR; functionD = function.getDomain(); functionR = function.getRange(); } // ((ImageLine, ImageElement) -> ImageValue) // ((ImageLine, ImageElement) -> (ImageValue)) // ((ImageLine, ImageElement) -> (Red, Green, Blue)) if (function.equalsExceptName(image_type) || function.equalsExceptName(image_type2) || function.equalsExceptName(image_type3)) { domain = function.getDomain(); MathType rt = function.getRange(); if (rt instanceof RealType) { range = new RealTupleType((RealType) rt); } else if (rt instanceof RealTupleType) { range = (RealTupleType) rt; } else { // illegal MathType throw new VisADException("Illegal RangeType"); } } else { // illegal MathType throw new VisADException("Illegal MathType"); } // extract x and y from domain x = (RealType) domain.getComponent(0); y = (RealType) domain.getComponent(1); // WLH 19 July 2000 CoordinateSystem cs = domain.getCoordinateSystem(); if (cs != null) { RealTupleType rxy = cs.getReference(); rx = (RealType) rxy.getComponent(0); ry = (RealType) rxy.getComponent(1); } // extract colors from range int dim = range.getDimension(); if (dim == 1) rgb = (RealType) range.getComponent(0); else { // dim == 3 r = (RealType) range.getComponent(0); g = (RealType) range.getComponent(1); b = (RealType) range.getComponent(2); } // verify that collection of ScalarMaps is legal boolean btime = (time == null); boolean bx = false, by = false; boolean brx = false, bry = false; // WLH 19 July 2000 boolean br = false, bg = false, bb = false; boolean dbr = false, dbg = false, dbb = false; Boolean latlon = null; DisplayRealType spatial = null; for (int i = 0; i < maps.length; i++) { ScalarMap m = maps[i]; ScalarType md = m.getScalar(); DisplayRealType mr = m.getDisplayScalar(); boolean ddt = md.equals(time); boolean ddx = md.equals(x); boolean ddy = md.equals(y); boolean ddrx = md.equals(rx); boolean ddry = md.equals(ry); boolean ddr = md.equals(r); boolean ddg = md.equals(g); boolean ddb = md.equals(b); boolean ddrgb = md.equals(rgb); // animation mapping if (ddt) { if (btime) throw new VisADException("Multiple Time mappings"); if (!mr.equals(Display.Animation)) { throw new VisADException("Time mapped to something other than Animation"); } btime = true; } // spatial mapping else if (ddx || ddy || ddrx || ddry) { if (ddx && bx || ddy && by || ddrx && brx || ddry && bry) { throw new VisADException("Duplicate spatial mappings"); } if (((ddx || ddy) && (brx || bry)) || ((ddrx || ddry) && (bx || by))) { throw new VisADException("reference and non-reference spatial mappings"); } RealType q = (ddx ? x : null); if (ddy) q = y; if (ddrx) q = rx; if (ddry) q = ry; boolean ll; if (mr.equals(Display.XAxis) || mr.equals(Display.YAxis) || mr.equals(Display.ZAxis)) { ll = false; } else if (mr.equals(Display.Latitude) || mr.equals(Display.Longitude) || mr.equals(Display.Radius)) { ll = true; } else throw new VisADException("Illegal domain mapping"); if (latlon == null) { latlon = new Boolean(ll); spatial = mr; } else if (latlon.booleanValue() != ll) { throw new VisADException("Multiple spatial coordinate systems"); } // two mappings to the same spatial DisplayRealType are not allowed else if (spatial == mr) { throw new VisADException("Multiple mappings to the same spatial DisplayRealType"); } if (ddx) bx = true; else if (ddy) by = true; else if (ddrx) brx = true; else if (ddry) bry = true; } // rgb mapping else if (ddrgb) { if (br || bg || bb) { throw new VisADException("Duplicate color mappings"); } if (rgb == null || !(mr.equals(Display.RGB) || mr.equals(Display.RGBA))) { throw new VisADException("Illegal RGB/RGBA mapping"); } dbr = dbg = dbb = true; br = bg = bb = true; } // color mapping else if (ddr || ddg || ddb) { if (rgb != null) throw new VisADException("Illegal RGB mapping"); RealType q = (ddr ? r : (ddg ? g : b)); if (mr.equals(Display.Red)) dbr = true; else if (mr.equals(Display.Green)) dbg = true; else if (mr.equals(Display.Blue)) dbb = true; else throw new VisADException("Illegal color mapping"); if (ddr) br = true; else if (ddg) bg = true; else bb = true; } // illegal ScalarMap involving this MathType else if (ddt || ddx || ddy || ddrx || ddry || ddr || ddg || ddb || ddrgb) { throw new VisADException("Illegal mapping: " + m); } } // return true if all conditions for ImageRendererJ3D are met if (!(btime && ((bx && by) || (brx && bry)) && br && bg && bb && dbr && dbg && dbb)) { throw new VisADException("Insufficient mappings"); } return true; }